898 resultados para Deterministic imputation
Resumo:
One central question in the formal linguistic study of adult multilingual morphosyntax (i.e., L3/Ln acquisition) involves determining the role(s) the L1 and/or the L2 play(s) at the L3 initial state (e.g., Bardel & Falk, Second Language Research 23: 459–484, 2007; Falk & Bardel, Second Language Research: forthcoming; Flynn et al., The International Journal of Multilingualism 8: 3–16, 2004; Rothman, Second Language Research: forthcoming; Rothman & Cabrelli, On the initial state of L3 (Ln) acquisition: Selective or absolute transfer?: 2007; Rothman & Cabrelli Amaro, Second Language Research 26: 219–289, 2010). The present article adds to this general program, testing Rothman's (Second Language Research: forthcoming) model for L3 initial state transfer, which when relevant in light of specific language pairings, maintains that typological proximity between the languages is the most deterministic variable determining the selection of syntactic transfer. Herein, I present empirical evidence from the later part of the beginning stages of L3 Brazilian Portuguese (BP) by native speakers of English and Spanish, who have attained an advanced level of proficiency in either English or Spanish as an L2. Examining the related domains of syntactic word order and relative clause attachment preference in L3 BP, the data clearly indicate that Spanish is transferred for both experimental groups irrespective of whether it was the L1 or L2. These results are expected by Rothman's (Second Language Research: forthcoming) model, but not necessarily predicted by other current hypotheses of multilingual syntactic transfer; the implications of this are discussed.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
A small group of phytoplankton species that produce toxic or allelopathic chemicals has a significant effect on plankton dynamics in marine ecosystems. The species of non-toxic phytoplankton, which are large in number, are affected by the toxin-allelopathy of those species. By analysis of the abundance data of marine phytoplankton collected from the North-West coast of the Bay of Bengal, an empirical relationship between the abundance of the potential toxin-producing species and the species diversity of the non-toxic phytoplankton is formulated. A change-point analysis demonstrates that the diversity of non-toxic phytoplankton increases with the increase of toxic species up to a certain level. However, for a massive increase of the toxin-producing species the diversity of phytoplankton at species level reduces gradually. Following the results, a deterministic relationship between the abundance of toxic phytoplankton and the diversity of non-toxic phytoplankton is developed. The abundance–diversity relationship develops a unimodal pathway through which the abundance of toxic species regulates the diversity of phytoplankton. These results contribute to the current understanding of the coexistence and biodiversity of phytoplankton, the top-down vs. bottom-up debate, and to that of abundance–diversity relationship in marine ecosystems.
Resumo:
We apply experimental methods to study the role of risk aversion on players’ behavior in repeated prisoners’ dilemma games. Faced with quantitatively equal discount factors, the most risk-averse players will choose Nash strategies more often in the presence of uncertainty than when future profits are discounted in a deterministic way. Overall, we find that risk aversion relates negatively with the frequency of collusive outcomes.
Resumo:
Medium range flood forecasting activities, driven by various meteorological forecasts ranging from high resolution deterministic forecasts to low spatial resolution ensemble prediction systems, share a major challenge in the appropriateness and design of performance measures. In this paper possible limitations of some traditional hydrological and meteorological prediction quality and verification measures are identified. Some simple modifications are applied in order to circumvent the problem of the autocorrelation dominating river discharge time-series and in order to create a benchmark model enabling the decision makers to evaluate the forecast quality and the model quality. Although the performance period is quite short the advantage of a simple cost-loss function as a measure of forecast quality can be demonstrated.
Resumo:
Providing probabilistic forecasts using Ensemble Prediction Systems has become increasingly popular in both the meteorological and hydrological communities. Compared to conventional deterministic forecasts, probabilistic forecasts may provide more reliable forecasts of a few hours to a number of days ahead, and hence are regarded as better tools for taking uncertainties into consideration and hedging against weather risks. It is essential to evaluate performance of raw ensemble forecasts and their potential values in forecasting extreme hydro-meteorological events. This study evaluates ECMWF’s medium-range ensemble forecasts of precipitation over the period 2008/01/01-2012/09/30 on a selected mid-latitude large scale river basin, the Huai river basin (ca. 270,000 km2) in central-east China. The evaluation unit is sub-basin in order to consider forecast performance in a hydrologically relevant way. The study finds that forecast performance varies with sub-basin properties, between flooding and non-flooding seasons, and with the forecast properties of aggregated time steps and lead times. Although the study does not evaluate any hydrological applications of the ensemble precipitation forecasts, its results have direct implications in hydrological forecasts should these ensemble precipitation forecasts be employed in hydrology.
Resumo:
Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by European hydrometeorological agencies. The most obvious advantage of HEPS is that more of the uncertainty in the modelling system can be assessed. In addition, ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the physical and technical aspects of the model systems, such as increased resolution in time and space and better description of physical processes. Developments like these are certainly needed; however, in this paper we argue that there are other areas of HEPS that need urgent attention. This was also the result from a group exercise and a survey conducted to operational forecasters within the European Flood Awareness System (EFAS) to identify the top priorities of improvement regarding their own system. They turned out to span a range of areas, the most popular being to include verification of an assessment of past forecast performance, a multi-model approach for hydrological modelling, to increase the forecast skill on the medium range (>3 days) and more focus on education and training on the interpretation of forecasts. In light of limited resources, we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them. This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement of EFAS in particular and to spur the development of operational HEPS in general.
Resumo:
This paper tests directly for deterministic chaos in a set of ten daily Sterling-denominated exchange rates by calculating the largest Lyapunov exponent. Although in an earlier paper, strong evidence of nonlinearity has been shown, chaotic tendencies are noticeably absent from all series considered using this state-of-the-art technique. Doubt is cast on many recent papers which claim to have tested for the presence of chaos in economic data sets, based on what are argued here to be inappropriate techniques.
Resumo:
Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in an hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main precursor of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homestasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.
Resumo:
In this paper we develop and apply methods for the spectral analysis of non-selfadjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analogous deterministic matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun. Math. Phys. 216 (2001), 687–704). As a major application to illustrate our methods we focus on the “hopping sign model” introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443), in which the main objects of study are random tridiagonal matrices which have zeros on the main diagonal and random ±1’s as the other entries. We explore the relationship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite and bi-infinite matrix cases, for example showing that the numerical range and p-norm ε - pseudospectra (ε > 0, p ∈ [1,∞] ) of the random finite matrices converge almost surely to their infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix spectrum Σ. We also propose a sequence of inclusion sets for Σ which we show is convergent to Σ, with the nth element of the sequence computable by calculating smallest singular values of (large numbers of) n×n matrices. We propose similar convergent approximations for the 2-norm ε -pseudospectra of the infinite random matrices, these approximations sandwiching the infinite matrix pseudospectra from above and below.
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.
Resumo:
This is the first half of a two-part paper which deals with the social theoretic assumptions underlying system dynamics. The motivation is that clarification in this area can help mainstream social scientists to understand how our field relates to their literature, methods and concerns. Part I has two main sections. The aim of the first is to answer the question: How do the ideas of system dynamics relate to traditional social theories? The theoretic assumptions of the field are seldom explicit but rather are implicit in its practice. The range of system dynamics practice is therefore considered and related to a framework - widely used in both operational research (OR) and systems science - that organises the assumptions behind traditional social theoretic paradigms. Distinct and surprisingly varied groupings of practice are identified, making it difficult to place system dynamics in any one paradigm with any certainty. The difficulties of establishing a social theoretic home for system dynamics are exemplified in the second main section. This is done by considering the question: Is system dynamics deterministic? An analysis shows that attempts to relate system dynamics to strict notions of voluntarism or determinism quickly indicate that the field does not fit with either pole of this dichotomous, and strictly paradigmatic, view. Part I therefore concludes that definitively placing system dynamics with respect to traditional social theories is highly problematic. The scene is therefore set for Part II of the paper, which proposes an innovative and potentially fruitful resolution to this problem.
Resumo:
The performance of rank dependent preference functionals under risk is comprehensively evaluated using Bayesian model averaging. Model comparisons are made at three levels of heterogeneity plus three ways of linking deterministic and stochastic models: the differences in utilities, the differences in certainty equivalents and contextualutility. Overall, the"bestmodel", which is conditional on the form of heterogeneity is a form of Rank Dependent Utility or Prospect Theory that cap tures the majority of behaviour at both the representative agent and individual level. However, the curvature of the probability weighting function for many individuals is S-shaped, or ostensibly concave or convex rather than the inverse S-shape commonly employed. Also contextual utility is broadly supported across all levels of heterogeneity. Finally, the Priority Heuristic model, previously examined within a deterministic setting, is estimated within a stochastic framework, and allowing for endogenous thresholds does improve model performance although it does not compete well with the other specications considered.
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.