967 resultados para Detectors òptics
Resumo:
"March 1972."
Resumo:
"15 December 1987."
Resumo:
"April 1981."
Resumo:
"B-222851"--P. [1]
Resumo:
We theoretically demonstrate a method for producing the maximally path-entangled state (1/root2)(\N,0>+exp[iNphi]\0,N>) using intensity-symmetric multiport beam splitters, single photon inputs, and either photon-counting postselection or conditional measurement. The use of postselection enables successful implementation with non-unit efficiency detectors. We also demonstrate how to make the same state more conveniently by replacing one of the single photon inputs by a coherent state.
Resumo:
The hallucinogenic serotonin(IA&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.
Resumo:
It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.
Resumo:
We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an Unruh temperature given by k(B)T=h kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.
Resumo:
Quantum optics experiments on bright beams are based on the spectral analysis of field fluctuations and typically probe correlations between radio-frequency sideband modes. However, the extra degree of freedom represented by this dual-mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum sidebands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the sidebands of a squeezed beam.
Resumo:
We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.
Resumo:
We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited, and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments. (c) 2005 Optical Society of America.
Resumo:
Fouling is the deposition of milk solids on heat transfer sur aces, particularly heat exchangers. It is a major industrial problem, which causes a decrease in heat transfer efficiency and shortens run times. The resultant effect is a decrease in process efficiency and economy. For studying and monitoring deposit formation, suitable fouling detectors or methods of measuring the deposit are required. This can be achieved through direct means, whereby the deposit is analyzed after a certain time, or indirectly through instrumentation for monitoring parameters such as temperature, pressure, flow rate, overall heat transfer coefficient, heat flux, and other physical properties. This article reviews the various reported fouling detection methods.
Resumo:
We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.
Resumo:
The Tritone Paradox refers to a sequence of two specially synthesised "Shepard" tones which may sound ascending to one listener, and descending to another. The present study examines a recent suggestion that people's responses on this task may be determined by neural processes which are sensitive to temporal variations in pitch - so-called spectral motion detectors. Twelve listeners with normal hearing were presented with pairs of Shepard tones in each of two conditions - first in the traditional sequential manner, and then simultaneously, with one tone presented to each ear. Results indicated that respondents were able to judge consistent relationships between the tones even when presented simultaneously, and a high degree of similarity was observed between responses in each condition. The implications of these results for current theories of the Tritone Paradox are discussed.
Resumo:
A novel approach, based on statistical mechanics, to analyze typical performance of optimum code-division multiple-access (CDMA) multiuser detectors is reviewed. A `black-box' view ot the basic CDMA channel is introduced, based on which the CDMA multiuser detection problem is regarded as a `learning-from-examples' problem of the `binary linear perceptron' in the neural network literature. Adopting Bayes framework, analysis of the performance of the optimum CDMA multiuser detectors is reduced to evaluation of the average of the cumulant generating function of a relevant posterior distribution. The evaluation of the average cumulant generating function is done, based on formal analogy with a similar calculation appearing in the spin glass theory in statistical mechanics, by making use of the replica method, a method developed in the spin glass theory.