913 resultados para Dermal filler


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution. © 2014 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acceleration of solid dosage form product development can be facilitated by the inclusion of excipients that exhibit poly-/multi-functionality with reduction of the time invested in multiple excipient optimisations. Because active pharmaceutical ingredients (APIs) and tablet excipients present diverse densification behaviours upon compaction, the involvement of these different powders during compaction makes the compaction process very complicated. The aim of this study was to assess the macrometric characteristics and distribution of surface charges of two powders: indomethacin (IND) and arginine (ARG); and evaluate their impact on the densification properties of the two powders. Response surface modelling (RSM) was employed to predict the effect of two independent variables; Compression pressure (F) and ARG percentage (R) in binary mixtures on the properties of resultant tablets. The study looked at three responses namely; porosity (P), tensile strength (S) and disintegration time (T). Micrometric studies showed that IND had a higher charge density (net charge to mass ratio) when compared to ARG; nonetheless, ARG demonstrated good compaction properties with high plasticity (Y=28.01MPa). Therefore, ARG as filler to IND tablets was associated with better mechanical properties of the tablets (tablet tensile strength (σ) increased from 0.2±0.05N/mm2 to 2.85±0.36N/mm2 upon adding ARG at molar ratio of 8:1 to IND). Moreover, tablets' disintegration time was shortened to reach few seconds in some of the formulations. RSM revealed tablet porosity to be affected by both compression pressure and ARG ratio for IND/ARG physical mixtures (PMs). Conversely, the tensile strength (σ) and disintegration time (T) for the PMs were influenced by the compression pressure, ARG ratio and their interactive term (FR); and a strong correlation was observed between the experimental results and the predicted data for tablet porosity. This work provides clear evidence of the multi-functionality of ARG as filler, binder and disintegrant for directly compressed tablets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanent-magnet (PM) synchronous machines (PMSMs) can provide excellent performance in terms of torque density, energy efficiency, and controllability. However, PMs on the rotor are prone to centrifugal force, which may break their physical integrity, particularly at high-speed operation. Typically, PMs are bound with carbon fiber or retained by alloy sleeves on the rotor surface. This paper is concerned with the design of a rotor retaining sleeve for a 1.12-MW 18-kr/min PM machine; its electromagnetic performance is investigated by the 2-D finite-element method (FEM). Theoretical and numerical analyses of the rotor stress are carried out. For the carbon fiber protective measure, the stresses of three PM configurations and three pole filler materials are compared in terms of operating temperature, rotor speed, retaining sleeve thickness, and interference fit. Then, a new hybrid protective measure is proposed and analyzed by the 2-D FEM for operational speeds up to 22 kr/min (1.2 times the rated speed). The rotor losses and machine temperatures with the carbon fiber retaining sleeve and the hybrid retaining sleeve are compared, and the sleeve design is refined. Two rotors using both designs are prototyped and experimentally tested to validate the effectiveness of the developed techniques for PM machines. The developed retaining sleeve makes it possible to operate megawatt PM machines at high speeds of 22 kr/min. This opens doors for many high-power high-speed applications such as turbo-generator, aerospace, and submarine motor drives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the anatomy of expanding, mature, and senescing leaves of tropical plants for the presence of red pigments: anthocyanins and betacyanins. We studied 463 species in total, 370 genera, belonging to 94 families. This included 21 species from five families in the Caryophyllales, where betacyanins are the basis for red color. We also included 14 species of ferns and gymnosperms in seven families and 29 species with undersurface coloration at maturity. We analyzed 399 angiosperm species (74 families) for factors (especially developmental and evolutionary) influencing anthocyanin production during expansion and senescence. During expansion, 44.9% produced anthocyanins and only 13.5% during senescence. At both stages, relatively few patterns of tissue distributions developed, primarily in the mesophyll, and very few taxa produced anthocyanins in dermal and ground tissue simultaneously. Of the 35 species producing anthocyanins both in development and senescence, most had similar cellular distributions. Anthocyanin distributions were identical in different developing leaves of three heteroblastic taxa. Phylogeny has influenced the distribution of anthocyanins in the epidermis and mesophyll of expanding leaves and the palisade parenchyma during senescence, although these influences are not strong. Betacyanins appear to have similar distributions in leaves of taxa within the Caryophyllales and, perhaps, similar functions. The presence of anthocyanins in the mesophyll of so many species is inconsistent with the hypothesis of protection against UV damage or fungal pathogens, and the differing tissue distributions indicate that the pigments may function in different ways, as in photoprotection and freeradical scavenging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red pigments, products of different metabolic pathways, occur in terrestrial plants. The flavonoid pathway contributes the greatest diversity, culminating in the prevalence of anthocyanins in the angiosperms. Anthocyanins are produced in flowers and fruits, and also in vegetative organs, but have been poorly researched in the latter. Anthocyanins are commonly produced in: 1. rapidly expanding leaves of tropical plants; 2. senescing leaves of temperate plants; 3. undersurfaces of floating leaves of aquatic plants; 4. abaxial surfaces of leaves of understory plants; and 5. leaves subjected to various environmental stresses. The distribution of anthocyanins in leaves, both in presence and in tissue distribution, is influenced by both phylogeny and development. Few species produce anthocyanins in leaf tissues derived from both dermal and ground embryonic tissue. These influences will be important in resolving the ecological roles of anthocyanins in leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin 3 (Edn3) is a ligand important to developing neural crest cells (NCC). Some NCC eventually migrate into the skin and give rise to the pigment-forming melanocytes found in hair follicles. Edn3's effects on NCC have been largely explored through spontaneous mutants and cell culture experiments. These studies have shown the Endothelin receptor B/Edn3 signaling pathway to be important in the proliferation/survival and differentiation of developing melanocytes. To supplement these investigations I have created doxycycline-responsive transgenic mice which conditionally over-express Edn3. These mice will help us clarify Edn3's role during the development of early embryonic melanoblasts, differentiating melanocyte precursors in the skin, and fully differentiated melanocytes in the hair follicle. The transgene mediated expression of Edn3 was predominantly confined to the roof plate of the neural tube and surface ectoderm in embryos and postnatally in the epidermal keratinocytes of the skin. Relative to littermate controls, transgenics develop increased pigmentation on most areas of the skin. My doxycycline-based temporal studies have shown that both embryonic and postnatal events are important for establishing and maintaining pigmented skin. The study of my Edn3 transgenic mice may offer some insight into the genetics behind benign dermal pigmentation and offer clues about the time periods important in establishing these conditions. This apparently abnormal development is echoed in a benign condition of human skin. Cases of dermal melanocytosis, such as common freckles, Mongolian spotting, and nevus of Ito demonstrate histological and etiological characteristics similar to those of the transgenic mice generated in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The improved performance of hydraulic binders, the base of Portland cement, consists in the careful selection and application of materials that promote greater durability and reduced maintenance costs There is a wide variety of chemical additives used in Portland cement slurries for cementing oil wells. These are designed to work in temperatures below 0 ° C (frozen areas of land) to 300 ° C (thermal recovery wells and geothermal); pressure ranges near ambient pressure (in shallow wells) to greater than 200 MPa (in deep wells). Thus, additives make possible the adaptation of the cement slurries for application under various conditions. Among the materials used in Portland cement slurry, for oil wells, the materials with nanometer scale have been applied with good results. The nanossílica, formed by a dispersion of SiO2 particles, in the nanometer scale, when used in cement systems improves the plastic characteristics and mechanical properties of the hardened material. This dispersion is used commercially as filler material, modifier of rheological properties and / or in recovery processes construction. It is also used in many product formulations such as paints, plastics, synthetic rubbers, adhesives, sealants and insulating materials Based on the above, this study aims to evaluate the performance of nanossílica as extender additive and improver of the performance of cement slurries subjected to low temperatures (5 ° C ± 3 ° C) for application to early stages of marine oil wells. Cement slurries were formulated, with densities 11.0;12.0 and 13.0 ppg, and concentrations of 0; 0.5, 1.0 and 1.5%. The cement slurries were subjected to cold temperatures (5 ° C ± 3 ° C), and its evaluation performed by tests rheological stability, free water and compressive strength in accordance with the procedures set by API SPEC 10A. Thermal characterization tests (TG / DTA) and crystallographic (XRD) were also performed. The use of nanossílica promoted reduction of 30% of the volume of free water and increased compression resistance value of 54.2% with respect to the default cement slurry. Therefore, nanossílica presented as a promising material for use in cement slurries used in the early stages of low-temperature oil wells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to conventional composites, polymer matrix nanocomposites typically exhibit enhanced properties at a significantly lower filler volume fraction. Studies published in the literature indicate t hat the addition of nanosilicate s can increase the resistance to flame propagation in polymers. In this work, a treatment of montmorillonite (MMT) nano clay and the effect of its ad dition o n flame propagation characteristics of vinyl ester were studied. The resea rch was conducted in two stages. The first stage focused on the purification and activation of the MMT clay collected from a natural deposit to improve compatibility with the polymer matrix . Clay modification with sodium acetate was also studied to improve particle dispersion in the polymer. The second step was focused on the effect of the addition of the treated clay on nanocomposites ’ properties. Nanocomposites with clay con tents of 1, 2, 4 wt. % were processed. T he techniques for the characterization of the clay included X - ray fluorescence (XRF), X - r ay d iffraction (XRD), thermogravimetric a nalysis (TGA), d ifferential scanning c alorimetry (DSC) , s urface area (BET) and Fourier transform infrared spectroscopy (FTIR). For t he characterization of the nanocomposites , the techniques used were thermogravimetric a nalysis (TGA) , differential scanning c alorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) , scanning electron mi croscopy (SEM), transmission electron m icroscopy (TEM), and the determination of tensile strength, modulus of elasticity and resistance to flame propagation. According to the results, the purification and activation treatment with freeze - drying used in thi s work for the montmorillonite clay was efficient to promote compatibility and dispersion in the polymer matrix as evidenced by the characterization of the nanocomposite s . It was also observed that the clay modifica tion using sodium acetate did not produce any significant effect to improve compatibilization of the clay with the polymer. The addition of the treated MMT resulted in a reduction of up to 53% in the polymer flame propagation speed and did not affect the mechanical tensile strength and modulus o f elas ticity of the polymer, indicating compatibility between the clay and polymer. The effectiveness in reducing flame propagation speed peaked for nanocomposites with 2 wt. % clay, indicating that this is the optimum clay concentration for this property. T he clay treatment used in this work enables the production of vinylester matrix nanocomposites with flame - retardancy properties .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to manufacture and characterize a hybrid plastic composite with the matrix isophthalic polyester resin base and having as reinforcing glass fiber and the dry endocarp of coconut (Coco nucifera Linn) in the form of particles as filler. The composite was made industrially in Tecniplas Industry and Trade LTDA. in the form of plate, and was manufactured process made by the manual lamination (Hand Lay Up). From the plate they were prepared test specimens for testing density, water absorption, uniaxial traction in dry and wet states, and testing of bending, as well as studies on the behavior of the generated fractures, macroscopic and microscopic, in mechanical tests through. All tests were performed in order to find the most viable applications the hybrid composite manufactured. The tensile and bending tests were analyzed last tensile properties, elasticity and deformation module. After the studies, it is observed that the percentage moisture absorbed was 3.03%. The presence of moisture in the tensile test meant a decrease of 19.77% from last stand, and 5.26% in the elastic modulus. For bending tests gave an average value of 69.13 MPa flexural strength. The results show the application of hybrid composite studied in lightweight structures, indoors, which require low / medium performance traction demands, and which involve flexural requests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il seguente lavoro di tesi si pone come obiettivo di ottimizzare il mix design di materiali geopolimerici a base di metacaolino in modo da ottimizzare il procedimento di formatura tramite pressatura tipico delle piastrelle ceramiche. La parte iniziale del lavoro sperimentale è stata incentrata sullo studio dell’ottimizzazione delle formulazioni per ottenere impasti geopolimerici a base di metacaolino idonei per la pressatura e il colaggio; sono stati quindi preparate diverse formulazioni ottenute variando diversi parametri di processo, quali il contenuto totale di acqua dell’impasto e la concentrazione di quarzo utilizzato come filler inerte. Su tali mix è stato individuato il processo di formatura più idoneo dal punto di vista di temperatura di consolidamento, modalità e tempi di cottura ed è stato messo a punto il procedimento ottimale per la preparazione dei materiali, procedimento che è stato poi mantenuto per l’intero decorso dello studio. Nella produzione degli impasti si è deciso di eliminare sistematicamente quelle formulazioni che avevano prodotto materiali con peggiori prestazioni fisiche, come alcune formulazioni testate per il colaggio. Successivamente, dopo avere preparato i campioni, su di essi sono state eseguite le prove di assorbimento d’acqua e porosimetria ad intrusione di mercurio, per valutare le caratteristiche fisiche dei vari impasti prodotti, osservazioni al microscopio ottico e al microscopio a scansione elettronica, per analizzare i campioni selezionati dal punto di vista microstrutturale e morfologico e prove al microscopio riscaldante, per studiarne il comportamento alle alte temperature. I risultati ottenuti sono stati messi a confronto con quelli dei materiali ceramici tradizionali, per avere indicazioni sulla potenzialità dei prodotti a base geopolimerica come alternativa alla produzione di piastrelle ceramiche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Flux Cored Arc Welding (FCAW) process, the transfer of filler metal (metal transfer modes) to the base material to accomplish the weld bead determines the weld quality and therefore studies of such phenomena is demanded. Thus, in this work, the metal transfer through the FCAW process is investigated by filming the phenomena with the assist of near infrared visualization. During the literature survey, it was found that this technic has not been used so far for analyzing the FCAW process. It must be pointed out that the radiation emitted from the weld arc, fumes and particles (spattering) in this process represent a barrier for these studies based in the process visualization. The monitoring of metal transfer for FCAW process was carried out within the operational envelope of voltage and wire feed speed with the electrode E71T-1 (1.2 mm diameter) and Ar+25%CO2 as a shielding gas. A local developed near infrared filming with frame rate of 300 Hz was employed for metal transfer visualization in order to contribute to a better understanding of this process and evaluating characteristics of metal transfer, unlike previous studies, which used shadowgraph technique. It can clearly be seen how the droplet is created and transferred in this process and also identify the different modes of metal transfer by changing the parameters of voltage and wire feed speed in metal transfer maps. The final result of this study is the metal transfer mode maps, which establish suitable conditions and provide the basis for developing arc control strategies for the FCAW process.