911 resultados para Deficiency diseases in plants
Isolation of Salmonella enterica Serovar Enteritidis in Blue-Fronted Amazon Parrot (Amazona aestiva)
Resumo:
Avian salmonellosis is a disease caused by bacteria of the genus Salmonella that can cause three distinct diseases in birds: pullorum diseases, fowl typhoid, and paratyphoid infection. Various wildlife species are susceptible to infections by Salmonella, regardless of whether they live in captivity or freely in the wild. The present study verified the presence of Salmonella enterica serovar Enteritidis in three captive specimens of Amazona aestiva. The study involved a total of 103 birds undergoing rehabilitation to prepare for living in the wild, after having been captured from animal traffickers and delivered to the Centrofauna Project of the Floravida Institute in São Paulo, Brazil. This is the first report of Salmonella Enteritidis isolation in A. aestiva that originated from capture associated with animal trafficking; Salmonella was detected during the study by the serologic method of rapid serum agglutination on a plate with bacterial isolate. The antimicrobial profile exam of the isolated samples demonstrated sensitivity to ampicillin, cefaclor, ciprofloxacin, and cloranfenicol. The three samples also presented resistance to more than four antibiotics. The presence of the genes invA and spvC was verified by PCR technique and was associated with virulence and absence of class 1 integron, a gene related to antimicrobial resistance. The commercial antigen for pullorum disease was shown to be a useful tool for rapid detection in the screening of Salmonella of serogroup D(1) in Psittaciformes. New studies on Salmonella carriage in birds involved in trafficking must be performed to better understand their participation in the epidemiologic cycle of salmonellosis in humans and other animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cell lysis in the formation of secretory cavities in plants has been questioned by some authors and considered as result of technical artifacts. To describe the formation of secretory resin cavities in Hymenaea stigonocarpa leaves, leaflet samples at different stages of differentiation were collected, fixed, and processed for light and electron microscopy as per usual methods. The initial cells of secretory resin cavities are protodermal and grow towards the mesophyll ground meristem; these cells then divide producing cell groups that are distinguished by the shape and arrangement of cytoplasm, and density. At the initial stages of differentiation of the secretory cavities, some central cells in these groups show dark cytoplasm and condensed nuclear chromatin. Later, there is cell wall loosening, tonoplast and plasmalemma rupture resulting in cell death. These cells, however, maintain organelle integrity until lysis, when the cell wall degrades and the plasmalemma ruptures, releasing protoplast residues, marked characteristics of programmed cell death. The secretory epithelium remains active until complete leaf expansion when the cavity is filled with resin and the secretory activity ceases. There are no wall residues between central cells in adult cavities. Our results demonstrate lysigeny and the importance of ontogenetic studies in determining the origin of secretory cavities.
Resumo:
Net photosynthesis (A) and transpiration rates (E), stomatal conductance (g), water use efficiency (WUE), intrinsic water use efficiency (IWUE) and internal leaf CO2 concentration (C) in response to different vapor pressure deficit (1.2 and 2.5 kPa) were investigated in 'Pera' sweet orange plants affected by citrus variegated chlorosis (CVC), a disease caused by Xylella fastidiosa. All plants were well watered and leaf water potential (Pw) was also measured by the psychrometric technique. Results showed that healthy plants responded to higher vapor pressure deficit (VPD), lowering its net photosynthesis and transpiration rates, and stomatal conductance. However, diseased plants presented no clear response to VPD, showing lower A, E and g for both VPDs studied and very similar values to these variables in healthy plants at the highest VPD. Internal leaf CO2 concentration also decreased for healthy plants when under the highest VPD, and surprisingly, the same pattern of response was found in plants with CVC. These results, the lower Psi(w) and higher WUE values for diseased plants, indicated that this disease may cause stomatal dysfunction and affect the water resistance through xylem vessels, which ultimately may play some role in photosynthetic metabolism. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Com o objetivo de avaliar o efeito da enxertia e do enriquecimento da água de irrigação com dióxido de carbono sobre o teor de N, P, K, Ca, Mg, S, Mn e Zn na parte aérea de plantas de pepino tipo japonês cultivados em ambiente protegido, foram conduzidos experimentos em duas épocas do ano. O delineamento experimental foi em blocos ao acaso com quatro tratamentos e quatro repetições. Os tratamentos foram plantas de pepino enxertadas e não enxertadas, irrigadas com água comum ou enriquecida com CO2, em uma concentração de 1 no primeiro semestre e 0,25 no segundo semestre. No final do ciclo da cultura, o CO2, influenciou unicamente no primeiro semestre os teores de K, Ca, Mg, S e Zn; enquanto o teor de N só alterou no segundo semestre. Não houve padrão de resposta consistente da enxertia sobre os teores de N, P, Mg e Zn; porém, plantas enxertadas apresentam maior teor de K e menor teor de Mg, S e Ca na sua parte aérea, ao final do ciclo da cultura, podendo estar relacionado com os sintomas de deficiências nutricionais observados em plantas de pepino enxertadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Quantitative data from gene expression experiments are often normalized by transcription levels of reference or housekeeping genes. An inherent assumption for their use is that the expression of these genes is highly uniform in living organisms during various phases of development, in different cell types and under diverse environmental conditions. To date, the validation of reference genes in plants has received very little attention and suitable reference genes have not been defined for a great number of crop species including Coffea arabica. The aim of the research reported herein was to compare the relative expression of a set of potential reference genes across different types of tissue/organ samples of coffee. We also validated the expression profiles of the selected reference genes at various stages of development and under a specific biotic stress.Results: The expression levels of five frequently used housekeeping genes (reference genes), namely alcohol dehydrogenase (adh), 14-3-3, polyubiquitin (poly), beta-actin (actin) and glyceraldehyde-3-phosphate dehydrogenase (gapdh) was assessed by quantitative real-time RT-PCR over a set of five tissue/organ samples (root, stem, leaf, flower, and fruits) of Coffea arabica plants. In addition to these commonly used internal controls, three other genes encoding a cysteine proteinase (cys), a caffeine synthase (ccs) and the 60S ribosomal protein L7 (rpl7) were also tested. Their stability and suitability as reference genes were validated by geNorm, NormFinder and BestKeeper programs. The obtained results revealed significantly variable expression levels of all reference genes analyzed, with the exception of gapdh, which showed no significant changes in expression among the investigated experimental conditions.Conclusion: Our data suggests that the expression of housekeeping genes is not completely stable in coffee. Based on our results, gapdh, followed by 14-3-3 and rpl7 were found to be homogeneously expressed and are therefore adequate for normalization purposes, showing equivalent transcript levels in different tissue/ organ samples. Gapdh is therefore the recommended reference gene for measuring gene expression in Coffea arabica. Its use will enable more accurate and reliable normalization of tissue/organ-specific gene expression studies in this important cherry crop plant.
Resumo:
Mineralization of the articular cartilage is a pathological condition associated with age and certain joint diseases in humans and other mammals. In this work, we describe a physiological process of articular cartilage mineralization in bullfrogs. Articular cartilage of the proximal and distal ends of the femur and of the proximal end of the tibia-fibula was studied in animals of different ages. Mineralization of the articular cartilage was detected in animals at 1 month post-transformation. This mineralization, which appeared before the hypertrophic cartilage showed any calcium deposition, began at a restricted site in the lateral expansion of the cartilage and then progressed to other areas of the epiphyseal cartilage. Mineralized structures were identified by von Kossa's staining and by in vivo incorporation of calcein green. Element analysis showed that calcium crystals consisted of poorly crystalline hydroxyapatite. Mineralized matrix was initially spherical structures that generally coalesced after a certain size to occupy larger areas of the cartilage. Alkaline phosphatase activity was detected at the plasma membrane of nearby chondrocytes and in extracellular matrix. Apoptosis was detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) reaction in some articular chondrocytes from mineralized areas. The area occupied by calcium crystals increased significantly in older animals, especially in areas under compression. Ultrastructural analyses showed clusters of needle-like crystals in the extracellular matrix around the chondrocytes and large blocks of mineralized matrix. In 4-year-old animals, some lamellar bone (containing bone marrow) occurred in the same area as articular cartilage mineralization. These results show that the articular cartilage of R. catesbeiana undergoes precocious and progressive mineralization that is apparently stimulated by compressive forces. We suggest that this mineralization is involved in the closure of bone extremities, since mineralization appears to precede the formation of a rudimentary secondary center of ossification in older animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)