864 resultados para Deciduous dentition
Resumo:
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Resumo:
Licenced under a Creative Commons Attribution 3.0.
Resumo:
A seringueira é uma planta de fácil reconhecimento por ser lenhosa, de porte mediano a grande, que apresenta um padrão característico de desfolha e reenfolhamento e, sobretudo, pela produção de látex. O objetivo do trabalho foi efetuar um estudo anatômico e morfológico foliar, comparando os clones RRIM 600 e GT 1 de seringueira &91;Hevea brasiliensis (Wild. ex Adr. de Juss.) Muell.- Arg&93;, desenvolvidos sob as mesmas condições edáficas e climáticas, para obtenção de informações que possam fornecer subsídios para correlações com dados fisiológicos e também diferenciar os clones em relação ao conteúdo de fibras, espessamento de tecidos do parênquima paliçádico e do parênquima lacunoso, caracterização anatômica do pecíolo, número e tamanho de estômatos e fornecer dados referentes a morfologia foliolar. Foram realizadas secções transversais na região do mesófilo, nervura central e pecíolo, seguindo-se os métodos usuais de preparação de lâminas permanentes. Foram realizadas análises biométricas de extensões de tecidos dos parênquimas paliçádico e lacunoso e contagem do número de células do parênquima lacunoso. Paralelamente foram realizadas análises biométricas para aferições de estômatos. Não houve diferenças para a altura das células epidérmicas, altura e número de camadas do parênquima lacunoso e para o comprimento e para a maior largura do limbo foliolar. Porém houve variação para a espessura das células do parênquima paliçádico, sendo que GT 1 apresentou maior espessura em relação a RRIM 600. GT1 apresentou maior número de estômatos em relação a RRIM 600, porém com menor tamanho. GT1 apresentou maior diâmetro da nervura central da folha e do pecíolo e maior quantidade de fibras de esclerênquima que RRIM 600.
Resumo:
Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.
Resumo:
Introdução: A Classe II Divisão 1 trata-se de um tipo de má oclusão com elevada prevalência na população com repercussões tanto físicas como psicológicas que pode ser diagnosticado precocemente em dentição mista, cujo seu tratamento pode ser apenas corretivo em dentição permanente ou bifásico com a primeira fase realizada em dentição mista. Objetivo: O objetivo do trabalho é realizar uma revisão sobre o diagnóstico e tratamento de Classe II Divisão 1 em dentição mista, averiguando qual a melhor metodologia a adotar. Materiais e Métodos: Para a concretização do presente trabalho foi realizada uma revisão bibliográfica, no presente ano, recorrendo-se a diversos motores de busca online, nomeadamente, Pubmed, Scielo, Medline, Science Direct, Elsevier e Scholar Google, utilizando como palavras-chave: “ class II”, “mixed dentition”, “overjet” e “orthodontic treatment”. A pesquisa foi realizada sem limite temporal, no entanto primazia foi conferida a artigos mais recentes. Os artigos foram selecionados mediante o seu rigor científico e interesse para o tema. Conclusão: Após a análise de vários estudos que averiguaram a necessidade de duas fases de tratamento ortodôntico em situações de Classe II Divisão 1 concluiu-se que para um maior conforto do paciente, assim como pelos resultados obtidos, o tratamento apenas em uma fase será o mais indicado. Quanto ao momento mais oportuno para a intervenção ainda existe espaço para debate, ficando claro que dependerá do paciente assim como da metodologia adotada pelo ortodontista.
Resumo:
BACKGROUND: The WNT10A protein is critical for the development of ectodermal appendages. Variants in the WNT10A gene may be associated with a spectrum of ectodermal abnormalities including extensive tooth agenesis. METHODS: In seven patients with severe tooth agenesis we identified anomalies in primary dentition and additional ectodermal symptoms, and assessed WNT10A mutations by genetic analysis. RESULTS: Investigation of primary dentition revealed peg-shaped crowns of primary mandibular incisors and three individuals had agenesis of at least two primary teeth. The permanent dentition was severely affected in all individuals with a mean of 21 missing teeth. Primary teeth were most often present in positions were succedaneous teeth were missing. Furthermore, most existing molars had taurodontism. Light, brittle or coarse hair was reported in all seven individuals, hyperhidrosis of palms and soles in six individuals and nail anomalies in two individuals. The anomalies in primary dentition preceded most of the additional ectodermal symptoms. Genetic analysis revealed that all seven individuals were homozygous or compound heterozygous for WNT10A mutations resulting in C107X, E222X and F228I. CONCLUSIONS: We conclude that tooth agenesis and/or peg-shaped crowns of primary mandibular incisors, severe oligodontia of permanent dentition as well as ectodermal symptoms of varying severity may be predictors of bi-allelic WNT10A mutations of importance for diagnosis, counselling and follow-up.
Resumo:
Understanding factors that affect the distribution and abundance of species is critical to developing effective management plans for conservation. Our goal was to quantify the distribution and abundance of Canada Warbler (Cardellina canadensis), a threatened old-forest associate in Alberta, Canada. The Canada Warbler has declined across its range, including in Alberta where habitat loss and alteration from urban expansion, forestry, and energy development are changing the forest landscape. We used 110,427 point count survey visits from 32,287 unique survey stations to model local-level (150-m radius circular buffers) and stand-level (564-m radius circular buffers) habitat associations of the Canada Warbler. We found that habitat supporting higher densities of Canada Warblers was locally concentrated yet broadly distributed across Alberta’s boreal forest region. Canada Warblers were most commonly associated with older deciduous forest at the local scale, particularly near small, incised streams, and greater amounts of deciduous forest at the stand scale. Predicted density was lower in other forest types and younger age classes measured at the local scale. There was little evidence that local-scale fragmentation (i.e., edges created by linear features) influenced Canada Warbler abundance. However, current forestry practices in the province likely will reduce the availability of Canada Warbler habitat over time by cutting old deciduous forest stands. Our results suggest that conservation efforts aimed at Canada Warbler focus on retaining large stands of old deciduous forest, specifically stands adjacent to streams, by increasing the width of deciduous retention buffers along streams during harvest and increasing the size and number of old forest residual patches in harvested stands.
Resumo:
Advances in healthcare over the last 100 years has resulted in an ever increasing elderly population. This presents greater challenges for adequate systemic and oral healthcare delivery. With increasing age there is a natural decline in oral health, leading to the loss of teeth and ultimately for some having to wear denture prosthesis. It is currently estimated that approximately one fifth of the UK and US populations have some form of removable prosthesis. The microbiology of denture induced mucosal inflammation is a pivotal factor to consider in denture care management, similar to many other oral diseases of microbial influence, such as caries, gingivitis and periodontitis. Dentures support the growth of microbial biofilms, structures commonly known as denture plaque. Microbiologically, denture stomatitis (DS) is a disease primarily considered to be of yeast aetiology, with the literature disproportionately focussed on Candida spp. However, the denture surface is capable of carrying up to 1011 microbes per milligram, the majority of which are bacteria. Thus it is apparent that denture plaque is more diverse than we assume. There is a fundamental gap in our understanding of the bacterial composition of denture plaque and the role that they may play in denture related disease such as DS. This is categorised as inflammation of the oral mucosa, a disease affecting around half of all denture wearers. It has been proposed that bacteria and fungi interact on the denture surface and that these polymicrobial interactions lead to synergism and increased DS pathogenesis. Therefore, understanding the denture microbiome composition is the key step to beginning to understand disease pathogenesis, and ultimately help improve treatments and identify novel targets for therapeutic and preventative strategies. A group of 131 patients were included within this study in which they provided samples from their dentures, palatal mucosa, saliva and dental plaque. Microbes residing on the denture surface were quantified using standard Miles and Misra culture technique which investigated the presence of Candida, aerobes and anaerobes. These clinical samples also underwent next generation sequencing using the Miseq Illumina platform to give a more global representation of the microbes present at each of these sites in the oral cavity of these denture wearers. This data was then used to compare the composition and diversity of denture, mucosal and dental plaque between one another, as well as between healthy and diseased individuals. Additional comparisons included denture type and the presence or absence of natural teeth. Furthermore, microbiome data was used to assess differences between patients with varying levels of oral hygiene. The host response to the denture microbiome was investigated by screening the patients saliva for the presence and quantification of a range of antimicrobial peptides that are associated with the oral cavity. Based on the microbiome data an in vitro biofilm model was developed that reflected the composition of denture plaque. These biofilms were then used to assess quantitative and compositional changes over time and in response to denture cleansing treatments. Finally, the systemic implications of denture plaque were assessed by screening denture plaque samples for the presence of nine well known respiratory pathogens using quantitative PCR. The results from this study have shown that the bacterial microbiome composition of denture wearers is not consistent throughout the mouth and varies depending on sample site. Moreover, the presence of natural dentition has a significant impact on the microbiome composition. As for healthy and diseased patients the data suggests that compositional changes responsible for disease progression are occurring at the mucosa, and that dentures may in fact be a reservoir for these microbes. In terms of denture hygiene practices, sleeping with a denture in situ was found to be a common occurrence. Furthermore, significant shifts in denture microbiome composition were found in these individuals when compared to the denture microbiome of those that removed their denture at night. As for the host response, some antimicrobial peptides were found to be significantly reduced in the absence of natural dentition, indicating that the oral immune response is gradually impaired with the loss of teeth. This study also identified potentially serious systemic implications in terms of respiratory infection, as 64.6% of patients carried respiratory pathogens on their denture. In conclusion, this is the first study to provide a detailed understanding of the oral microbiome of denture wearers, and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS. The biofilm model created in this study demonstrated its potential as a platform to test novel actives. Future use of this model will aid in greater understanding of host: biofilm interactions. Such findings are applicable to oral health and beyond, and may help to identify novel therapeutic targets for the treatment of DS and other biofilm associated diseases.
Resumo:
El presente artículo de fitogeografía histórica trata de explicar a partir de documentos históricos y relatos de exploradores, buscadores de oro y científicos que recorrieron Costa Rica durante los siglos XVll, XVlll, XlX, el origen y flora de la sabana. Las sabanas de Guanacaste deben su origen a factores antropológicos, edafológicos y climatológicos que actúan en conjunto y no solo al factor antrópico como ha querido explicar. La flora de sabana proviene de la asociación vegetal matorral deciduo por la sequia con especies sempervirentes entremezcladas, cuya florase relaciona con la de las formaciones arbusticas herbáceas secas americanas, llanas y cerradas. Esta flora encuentra las condiciones favorables (fuego anual, larga estación seca, precipitación mal distribuida en el año, etc.) para diseminarse y ocupar el área del bosque seco deciduo por la sequia. SUMMARY The present article of historical phytogeography tryst to explain by means of historical documents and commentaries of explorers, goldminers and scientists that traveled in Costa Rica during the 17, 18 and 19 th centuries, the origin of the flora found in the Guanacaste savanna. The Guanacaste savanna owes its origin to a combination of anthropologic, edafologic and climatologic factors; and not only to the anthropologic factor as has been often thought. The savanna type flora originates from the deciduous thicket vegetative association that is common in dry areas intermingled with evergreen species. This type of flora is related to shrub and opens and closed dry Americans herbaceous formations. This flora chooses favorable conditions (burnt off areas, long dry season, poor annual precipitation distribution, etc) in the order to disseminate and occupy the deciduous dry forest. RESUME Cet article de phytogéographie historique, à partir de documents historiques, de récits d’explorateurs, de chercheurs d’or ; de scientifiques qui ont parcouru C.R aux XVll, XVlll et XlX siècles, tente d’expliquer l’origine de la savane ainsi que sa flore. On reconnaît que ces origines sont plutôt dûes aux actions conjointes de facteurs anthropologiques, pédologiques et climatiques, au lieu du seul facteur anthropologique comme on voulait l’expliquer auparavant. La savane résulte d’une association végétale : une brousse entremêlée d’espèces « semper virens » malgré l’existence de la saison sèche. Cette flore est en relation avec les informations arbustives et herbeuses –qui caractérisent les dépressions centre américaines- fermées, fonc sèches. Cette association végétale s’est implantée à la faveur de pratiqués culturales tels les brûlis annuels, des longues saisons sèches et de la répartition irrégulière des pluies au long de l’année, à la place de la forêt claire caducifoliée.