959 resultados para Databases on Properties of Inorganic Substances and Materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of four alkali-borosilicate glasses under homogeneous thermal neutron irradiation has been studied. These materials are used for the manufacturing of neutron guides which are installed in most facilities as devices to transport neutrons from intense sources such as nuclear reactors or spallation sources up to scientific instruments. Several experimental techniques such as Raman, NMR, SANS and STEM have been employed in order to understand the rather different macroscopic behaviour under irradiation of materials that belong to a same glass family. The results have shown that the remarkable glass shrinking observed for neutron doses below 0.5 · 10 18 n/cm 2 critically depends upon the presence of domains where silicate and borate network do not mix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously we proposed that endogenous amphiphilic substances may partition from the aqueous cytoplasm into the lipid phase during dehydration of desiccation-tolerant organ(ism)s and vice versa during rehydration. Their perturbing presence in membranes could thus explain the transient leakage from imbibing organisms. To study the mechanism of this phenomenon, amphiphilic nitroxide spin probes were introduced into the pollen of a model organism, Typha latifolia, and their partitioning behavior during dehydration and rehydration was analyzed by electron paramagnetic resonance spectroscopy. In hydrated pollen the spin probes mainly occurred in the aqueous phase; during dehydration, however, the amphiphilic spin probes partitioned into the lipid phase and had disappeared from the aqueous phase below 0.4 g water g−1 dry weight. During rehydration the probes reappeared in the aqueous phase above 0.4 g water g−1 dry weight. The partitioning back into the cytoplasm coincided with the decrease of the initially high plasma membrane permeability. A charged polar spin probe was trapped in the cytoplasm during drying. Liposome experiments showed that partitioning of an amphiphilic spin probe into the bilayer during dehydration caused transient leakage during rehydration. This was also observed with endogenous amphipaths that were extracted from pollen, implying similar partitioning behavior. In view of the fluidizing effect on membranes and the antioxidant properties of many endogenous amphipaths, we suggest that partitioning with drying may be pivotal to desiccation tolerance, despite the risk of imbibitional leakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactic acid) (PLA)-based high performance nano-biocomposites were prepared to be used in active food packaging. Pristine (CNC) and surfactant modified cellulose nanocrystals (s-CNC) with silver (Ag) nanoparticles were used as the matrix modifiers. Binary and ternary systems were prepared. Morphological investigations revealed the good distribution of silver nanoparticles in PLA ternary systems. The combination of s-CNC and Ag nanoparticles increased the barrier effect of the produced films while the results of overall migration for the PLA nano-biocomposites revealed that none of the samples exceeded the overall migration limit, since results were well below 60 mg kg−1 of simulant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days, compared to an ordinary Portland cement. Finally, slag cement grouts showed good service properties, better than ordinary Portland cement ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Report no. FHWA-IL-UI-278"--Technical report documentation page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined how the floc characteristics affect dewaterability of activated sludge. The floc properties were characterized by morphological parameters (floc size distribution, fractal dimension and filament index), physical properties (flocculating ability, surface charge, relative hydrophobicity and viscosity), and chemical constituents in sludge and extracted extracellular polymeric substances (EPS), including the polymeric compounds protein, humic substances, carbohydrates and the ions Ca2+, Mg2+, Fe3+ and Al3+. The dewaterability was defined in terms of the bound water content and capillary suction time (CST). The bound water and CST corresponded to a similar indication with respect to dewaterability of activated sludge. The floc physical parameters were the most important factors which effect significantly on the water binding ability of the sludge flocs. The morphological characteristics had relatively weak impact on the dewaterability. The polymeric components protein and carbohydrate had a significant contribution to enhance the water binding ability of the sludge flocs. The effect of humic substances in the sludge on the dewaterability was, however, insignificant. The CST had good statistical correlations with the polymeric constituents measured in both sludge and the extracted EPS, and the bound water was only correlated well with the individual polymers measured in the sludge. High concentration of Ca2+, Mg2+, Fe3+ and Al3+ had significant improvement for dewaterability. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify the effect of reactive preparation on the structure and properties of rigid polyurethane (PU)layered silicate nanocomposite, a range of nanocomposites were prepared by combining the various precursors in different sequences. The morphology of the samples was characterized by XRD and TEM. Tensile properties and dynamic mechanical thermal properties were measured. The reactions between the layered silicates and PU precursors were monitored via FTIR to gain an understanding of the participation of nanofiller in the polymerization reaction, and the impact of this on system stoichiometry. The XRD and TEM results provided evidence that morphology can differ significantly if different synthesis methods are used. However, the mechanical properties are dominated by the stoichiometry imbalance induced by the addition of the layered silicates. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Ca addition on the microstructure, physical characteristics (density/porosity), and mechanical properties (tensile and impact strength) has been investigated in an Al-7Si-0.3Mg-xFe (x = 0.2, 0.4, and 0.7) alloy. The size of Al-Fe intermetallic platelets (beta-Al5FeSi) increased with increasing Fe content. The addition of Ca modified the eutectic microstructure and also reduced the size of intermetallic Fe-platelets, causing improved elongation and impact strengths. A low level of Ca addition (39 ppm) reduced the porosity of the alloys. The tensile strength was decreased marginally with Ca addition. However, Ca addition improved the ductility of the alloy by 18.3, 16.7, and 44 pet and the impact strength by 44, 48, and 15.8 pct for Fe contents of 0.2, 0.4, and 0.7 pct, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saline-sodic clay minespoil materials excavated during open-cut coal mining in central Queensland, Australia, pose significant challenges for revegetation, particularly where suitable topsoil capping is not available. We examined the ability of sawdust or straw mulch amendments to ameliorate the adverse properties of these minespoils and improve the success of revegetation efforts. In laboratory studies, mulch application improved infiltration, increased soil moisture retention and reduced surface crust strength. In the field, mulches incorporated to a depth of 0.15 m at application rates of at least 20 t/ha straw or 80 t/ha sawdust were needed to mitigate against capillary rise of salts during drying cycles and support satisfactory vegetation cover. Further research is needed to determine whether improvements are maintained beyond the 4-year trial period reported here.