868 resultados para Data mining, alberi decisionali, incertezza, classificazione
Resumo:
The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.
Resumo:
In a world where data is captured on a large scale the major challenge for data mining algorithms is to be able to scale up to large datasets. There are two main approaches to inducing classification rules, one is the divide and conquer approach, also known as the top down induction of decision trees; the other approach is called the separate and conquer approach. A considerable amount of work has been done on scaling up the divide and conquer approach. However, very little work has been conducted on scaling up the separate and conquer approach.In this work we describe a parallel framework that allows the parallelisation of a certain family of separate and conquer algorithms, the Prism family. Parallelisation helps the Prism family of algorithms to harvest additional computer resources in a network of computers in order to make the induction of classification rules scale better on large datasets. Our framework also incorporates a pre-pruning facility for parallel Prism algorithms.
Resumo:
Induction of classification rules is one of the most important technologies in data mining. Most of the work in this field has concentrated on the Top Down Induction of Decision Trees (TDIDT) approach. However, alternative approaches have been developed such as the Prism algorithm for inducing modular rules. Prism often produces qualitatively better rules than TDIDT but suffers from higher computational requirements. We investigate approaches that have been developed to minimize the computational requirements of TDIDT, in order to find analogous approaches that could reduce the computational requirements of Prism.
Resumo:
Inducing rules from very large datasets is one of the most challenging areas in data mining. Several approaches exist to scaling up classification rule induction to large datasets, namely data reduction and the parallelisation of classification rule induction algorithms. In the area of parallelisation of classification rule induction algorithms most of the work has been concentrated on the Top Down Induction of Decision Trees (TDIDT), also known as the ‘divide and conquer’ approach. However powerful alternative algorithms exist that induce modular rules. Most of these alternative algorithms follow the ‘separate and conquer’ approach of inducing rules, but very little work has been done to make the ‘separate and conquer’ approach scale better on large training data. This paper examines the potential of the recently developed blackboard based J-PMCRI methodology for parallelising modular classification rule induction algorithms that follow the ‘separate and conquer’ approach. A concrete implementation of the methodology is evaluated empirically on very large datasets.
Resumo:
The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction.
Resumo:
In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach.
Resumo:
Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.
Resumo:
Purpose: This paper aims to design an evaluation method that enables an organization to assess its current IT landscape and provide readiness assessment prior to Software as a Service (SaaS) adoption. Design/methodology/approach: The research employs a mixed of quantitative and qualitative approaches for conducting an IT application assessment. Quantitative data such as end user’s feedback on the IT applications contribute to the technical impact on efficiency and productivity. Qualitative data such as business domain, business services and IT application cost drivers are used to determine the business value of the IT applications in an organization. Findings: The assessment of IT applications leads to decisions on suitability of each IT application that can be migrated to cloud environment. Research limitations/implications: The evaluation of how a particular IT application impacts on a business service is done based on the logical interpretation. Data mining method is suggested in order to derive the patterns of the IT application capabilities. Practical implications: This method has been applied in a local council in UK. This helps the council to decide the future status of the IT applications for cost saving purpose.
Resumo:
Background: Since their inception, Twitter and related microblogging systems have provided a rich source of information for researchers and have attracted interest in their affordances and use. Since 2009 PubMed has included 123 journal articles on medicine and Twitter, but no overview exists as to how the field uses Twitter in research. // Objective: This paper aims to identify published work relating to Twitter indexed by PubMed, and then to classify it. This classification will provide a framework in which future researchers will be able to position their work, and to provide an understanding of the current reach of research using Twitter in medical disciplines. Limiting the study to papers indexed by PubMed ensures the work provides a reproducible benchmark. // Methods: Papers, indexed by PubMed, on Twitter and related topics were identified and reviewed. The papers were then qualitatively classified based on the paper’s title and abstract to determine their focus. The work that was Twitter focused was studied in detail to determine what data, if any, it was based on, and from this a categorization of the data set size used in the studies was developed. Using open coded content analysis additional important categories were also identified, relating to the primary methodology, domain and aspect. // Results: As of 2012, PubMed comprises more than 21 million citations from biomedical literature, and from these a corpus of 134 potentially Twitter related papers were identified, eleven of which were subsequently found not to be relevant. There were no papers prior to 2009 relating to microblogging, a term first used in 2006. Of the remaining 123 papers which mentioned Twitter, thirty were focussed on Twitter (the others referring to it tangentially). The early Twitter focussed papers introduced the topic and highlighted the potential, not carrying out any form of data analysis. The majority of published papers used analytic techniques to sort through thousands, if not millions, of individual tweets, often depending on automated tools to do so. Our analysis demonstrates that researchers are starting to use knowledge discovery methods and data mining techniques to understand vast quantities of tweets: the study of Twitter is becoming quantitative research. // Conclusions: This work is to the best of our knowledge the first overview study of medical related research based on Twitter and related microblogging. We have used five dimensions to categorise published medical related research on Twitter. This classification provides a framework within which researchers studying development and use of Twitter within medical related research, and those undertaking comparative studies of research relating to Twitter in the area of medicine and beyond, can position and ground their work.