943 resultados para Data Utility
Resumo:
Background Osteoporosis is a common cause of disability and death in elderly men and women. Until 2007, Australian Government-subsidized use of oral bisphosphonates, raloxifene and calcitriol (1α,25-dihydroxycholecalciferol) was limited to secondary prevention (requiring x-ray evidence of previous low-trauma fracture). The cost to the Pharmaceutical Benefits Scheme was substantial (164 million Australian dollars in 2005/6). Objective To examine the dispensed prescriptions for oral bisphosphonates, raloxifene, calcitriol and two calcium products for the secondary prevention of osteoporosis (after previous low-trauma fracture) in the Australian population. Methods We analysed government data on prescriptions for oral bisphosphonates, raloxifene, calcitriol and two calcium products from 1995 to 2006, and by sex and age from 2002 to 2006. Prescription counts were converted to defined daily doses (DDD)/1000 population/day. This standardized drug utilization method used census population data, and adjusts for the effects of aging in the Australian population. Results Total bisphosphonate use increased 460% from 2.19 to 12.26 DDD/1000 population/day between June 2000 and June 2006. The proportion of total bisphosphonate use in June 2006 was 75.1% alendronate, 24.6% risedronate and 0.3% etidronate. Raloxifene use in June 2006 was 1.32 DDD/1000 population/day. The weekly forms of alendronate and risedronate, introduced in 2001 and 2003, respectively, were quickly adopted. Bisphosphonate use peaked at age 80–89 years in females and 85–94 years in males, with 3-fold higher use in females than in males. Conclusions Pharmaceutical intervention for osteoporosis in Australia is increasing with most use in the elderly, the population at greatest risk of fracture. However, fracture prevalence in this population is considerably higher than prescribing of effective anti-osteoporosis medications, representing a missed opportunity for the quality use of medicines.
Resumo:
Twitter ist eine besonders nützliche Quelle für Social-Media-Daten: mit dem Twitter-API (dem Application Programming Interface, das einen strukturierten Zugang zu Kommunikationsdaten in standardisierten Formaten bietet) ist es Forschern möglich, mit ein wenig Mühe und ausreichenden technische Ressourcen sehr große Archive öffentlich verbreiteter Tweets zu bestimmten Themen, Interessenbereichen, oder Veranstaltungen aufzubauen. Grundsätzlich liefert das API sehr langen Listen von Hunderten, Tausenden oder Millionen von Tweets und den Metadaten zu diesen Tweets; diese Daten können dann auf verschiedentlichste Weise extrahiert, kombiniert, und visualisiert werden, um die Dynamik der Social-Media-Kommunikation zu verstehen. Diese Forschung ist häufig um althergebrachte Fragestellungen herum aufgebaut, wird aber in der Regel in einem bislang unbekannt großen Maßstab durchgeführt. Die Projekte von Medien- und Kommunikationswissenschaftlern wie Papacharissi und de Fatima Oliveira (2012), Wood und Baughman (2012) oder Lotan et al. (2011) – um nur eine Handvoll der letzten Beispiele zu nennen – sind grundlegend auf Twitterdatensätze aufgebaut, die jetzt routinemäßig Millionen von Tweets und zugehörigen Metadaten umfassen, erfaßt nach einer Vielzahl von Kriterien. Was allen diesen Fällen gemein ist, ist jedoch die Notwendigkeit, neue methodische Wege in der Verarbeitung und Analyse derart großer Datensätze zur medienvermittelten sozialen Interaktion zu gehen.
Resumo:
Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.
Resumo:
Scholarly research into the uses of social media has become a major area of growth in recent years, as the adoption of social media for public communication itself has continued apace. While social media platforms provide ready avenues for data access through their Application Programming interfaces, it is increasingly important to think through exactly what these data represent, and what conclusions about the role of social media in society the research which is based on such data therefore enables. This article explores these issues especially for one of the currently leading social media platforms: Twitter.
Resumo:
After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.
Resumo:
Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive “mesenchymal” cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.