956 resultados para Data Fusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Public health research consistently demonstrates the salience of neighbourhood as a determinant of both health-related behaviours and outcomes across the human life course. This paper will report on the findings from a mixed-methods Brisbane-based study that explores how mothers with primary school children from both high and low socioeconomic suburbs use the local urban environment for the purpose of physical activity. Firstly, we demonstrate findings from an innovative methodology using the geographic information systems (GIS) embedded in social media platforms on mobile phones to track locations, resource-use, distances travelled, and modes of transport of the families in real-time; and secondly, we report on qualitative data that provides insight into reasons for differential use of the environment by both groups. Spatial/mapping and statistical data showed that while the mothers from both groups demonstrated similar daily routines, the mothers from the high SEP suburb engaged in increased levels of physical activity, travelled less frequently and less distance by car, and walked more for transport. The qualitative data revealed differences in the psychosocial processes and characteristics of the households and neighbourhoods of the respective groups, with mothers in the lower SEP suburb reporting more stress, higher conflict, and lower quality relationships with neighbours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an approach to obtain a localisation that is robust to smoke by exploiting multiple sensing modalities: visual and infrared (IR) cameras. This localisation is based on a state-of-the-art visual SLAM algorithm. First, we show that a reasonably accurate localisation can be obtained in the presence of smoke by using only an IR camera, a sensor that is hardly affected by smoke, contrary to a visual camera (operating in the visible spectrum). Second, we demonstrate that improved results can be obtained by combining the information from the two sensor modalities (visual and IR cameras). Third, we show that by detecting the impact of smoke on the visual images using a data quality metric, we can anticipate and mitigate the degradation in performance of the localisation by discarding the most affected data. The experimental validation presents multiple trajectories estimated by the various methods considered, all thoroughly compared to an accurate dGPS/INS reference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Four randomized phase II/III trials investigated the addition of cetuximab to platinum-based, first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). A meta-analysis was performed to examine the benefit/risk ratio for the addition of cetuximab to chemotherapy. MATERIALS AND METHODS: The meta-analysis included individual patient efficacy data from 2018 patients and individual patient safety data from 1970 patients comprising respectively the combined intention-to-treat and safety populations of the four trials. The effect of adding cetuximab to chemotherapy was measured by hazard ratios (HRs) obtained using a Cox proportional hazards model and odds ratios calculated by logistic regression. Survival rates at 1 year were calculated. All applied models were stratified by trial. Tests on heterogeneity of treatment effects across the trials and sensitivity analyses were performed for all endpoints. RESULTS: The meta-analysis demonstrated that the addition of cetuximab to chemotherapy significantly improved overall survival (HR 0.88, p=0.009, median 10.3 vs 9.4 months), progression-free survival (HR 0.90, p=0.045, median 4.7 vs 4.5 months) and response (odds ratio 1.46, p<0.001, overall response rate 32.2% vs 24.4%) compared with chemotherapy alone. The safety profile of chemotherapy plus cetuximab in the meta-analysis population was confirmed as manageable. Neither trials nor patient subgroups defined by key baseline characteristics showed significant heterogeneity for any endpoint. CONCLUSION: The addition of cetuximab to platinum-based, first-line chemotherapy for advanced NSCLC significantly improved outcome for all efficacy endpoints with an acceptable safety profile, indicating a favorable benefit/risk ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern health information systems can generate several exabytes of patient data, the so called "Health Big Data", per year. Many health managers and experts believe that with the data, it is possible to easily discover useful knowledge to improve health policies, increase patient safety and eliminate redundancies and unnecessary costs. The objective of this paper is to discuss the characteristics of Health Big Data as well as the challenges and solutions for health Big Data Analytics (BDA) – the process of extracting knowledge from sets of Health Big Data – and to design and evaluate a pipelined framework for use as a guideline/reference in health BDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses innovative content analysis techniques to map how the death of Oscar Pistorius' girlfriend, Reeva Steenkamp, was framed on Twitter conversations. Around 1.5 million posts from a two-week timeframe are analyzed with a combination of syntactic and semantic methods. This analysis is grounded in the frame analysis perspective and is different than sentiment analysis. Instead of looking for explicit evaluations, such as “he is guilty” or “he is innocent”, we showcase through the results how opinions can be identified by complex articulations of more implicit symbolic devices such as examples and metaphors repeatedly mentioned. Different frames are adopted by users as more information about the case is revealed: from a more episodic one, highly used in the very beginning, to more systemic approaches, highlighting the association of the event with urban violence, gun control issues, and violence against women. A detailed timeline of the discussions is provided.