999 resultados para DIVALENT LANTHANIDE COMPLEXES
Resumo:
Asymmetric cyclopropanation of olefins was carried out with chiral copper-Schiff base complexes derived from copper acetate monohydrate, substituted salicylaldehydes and a chiral amino alcohol. Substituents on salicylaldehyde framework demonstrate a significant effect on the steroselectivities. Those with electron-withdrawing properties enhance the selectivities, whereas bulky sustituents in ortho position to the phenol hydroxy group decrease the selectivities. An ee of more than 98% was achieved for the reaction of styrene with diazoacetate. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.
Resumo:
The novel (E,E)-dioxime, 5,6:17,18-dibenzo-11,12-(4-nitrobenzo)-2,3-bis(hydroxyimino)-7,16-dithia-10,13-dioxa-1,4-diazacyclooctadecane) (H2L), has been synthesized from reaction of (E,E)-dichloroglyoxime (1) with 2,3:14,15-dibenzo 8,9-(4-nitrobenzo)-4,13-dithia-7,10-dioxa-1,16-diazahegzadecane (2). The mononuclear Co(III) complex (4) of this dioxime was prepared by oxidation of the cobalt (II) complex. The -capped Co(III) complex (5) was synthesized by using a precursor Co(III) complex and boron trifluoride dietherate. The heterotrinuclear complexes (6) and (7) were prepared by reaction of (5) with NiCl2·6H2O and CdCl2·H2O, respectively. In addition, the homotrinuclear Cu(II) complex (8), has also been prepared by the reaction of this dioxime with CuCl2·H2O. The structures of the dioxime and its complexes were identified by using elemental analysis, 1H- and 13C-NMR, IR, and mass spectral data.
Resumo:
The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield.
Resumo:
A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied
Resumo:
Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations
Resumo:
A series of seven ruthenium complexes with different ligands were synthesized and their optical, electrochemical and photoluminescent properties were characterized. Electroluminescent properties of these complexes were further evaluated using a light-emitting electrochemical cell with a configuration of indium tin oxide (ITO)/complex (100 nm)/Au (100 nm).
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
(Y0.95Ln(0.01)Ce(0.04))(3)Al5O12 phosphors were synthesized by high-temperature solid state reaction under reducing atmosphere and the doping effects of lanthanide ions (Ln(3+)) on the luminescence properties of phosphors were studied. YAG: Ce, Ln spectra of excitation and emission show that the influence between Ce3+ and Ln(3+) can be divided into the following three types
Resumo:
Mo2O2S2(HGly)(GlY)(2) 1 and K-6[Mo2O2S2(nta)(2)][Mo2O2S2(ntaH)(2)]center dot 4H(2)O 2 were synthesized by the reactions of (NH4)(2)MoS4 and amino acids L (L = glycine, nitrilotriacetic acid) in ethanol-water medium at ambient temperature. The two complexes were characterized by elemental analysis, infrared spectra, UV-visible spectra, TG-DTA and XPS.
Resumo:
We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state.
Resumo:
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)(3)XL] (X = Br, Cl; L = 1-(4-5 '-phenyl-1.3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethyl benzimidazol-2-yl)pyridi ne (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were full optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively.
Resumo:
A series of near-infrared (NIR) luminescent complexes Ho(dbm)(3)L and Pr(dbm)(3)L [where dbm = dibenzoylmethane; L = 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy), or triphenyl phosphate oxide (TPPO)] were synthesized. Their elemental analyses, crystal structures, fluorescence spectra and luminescent lifetimes were successfully investigated.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.