949 resultados para DISTURBED HABITATS
Resumo:
Entre os diferentes tipos de organismos da macrofauna do solo, distribuídos em diversos tipos de habitats, com variados hábitos alimentares e ciclos de vida, alguns são capazes de responder rapidamente às alterações ambientais e, por isso, considerados bons indicadores do funcionamento dos ecossistemas. O presente trabalho teve como objetivo avaliar o efeito dos seguintes estádios sucessionais de Floresta Estacional Semidecidual Submontana do domínio ecológico da Mata Atlântica: floresta secundária estádio inicial (FSEI), floresta secundária estádio médio (FSEM), floresta secundária estádio avançado (FSEA) e uma área de pasto misto manejado (PMM) sobre a densidade, diversidade e composição da comunidade da macrofauna edáfica em duas épocas do ano, no município de Pinheiral (RJ). Para amostragem da macrofauna, foram retiradas oito amostras da serapilheira e da camada superficial (0-10 cm) do solo pelo método recomendado pelo programa Tropical Soil Biology and Fertility (TSBF), com adaptações. Predominaram Isoptera, Formicidae e Oligochaeta em FSEI, FSEM e FSEA e Formicidae e Oligochaeta em PMM. Não houve diferença significativa na densidade da macrofauna edáfica entre as áreas. Os maiores valores dos estimadores de diversidade utilizados (equabilidade de Pielou, riqueza total e média) foram encontrados em FSEA. Os valores de riqueza total mostraram aumento gradual de acordo com o estádio de sucessão, desde PMM até FSEI. Constatou-se maior número de indivíduos no solo do que na serapilheira em todas as áreas de floresta, nas duas épocas. Pela análise de componentes principais (ACP) realizada para os períodos seco e chuvoso, foi possível identificar maiores diferenças na composição das comunidades entre os estádios sucessionais para o período chuvoso. Nesta época, os estádios FSEM e FSEA estiveram associados a uma maior diversidade de invertebrados saprófagos e predadores do que PMM e FSEI, demonstrando influência do processo sucessional sobre a comunidade da macrofauna do solo.
Resumo:
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
C(4) photosynthesis is an adaptive trait conferring an advantage in warm and open habitats. It originated multiple times and is currently reported in 18 plant families. It has been recently shown that phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the C(4) pathway, evolved through numerous independent but convergent genetic changes in grasses (Poaceae). To compare the genetics of multiple C(4) origins on a broader scale, we reconstructed the evolutionary history of the C(4) pathway in sedges (Cyperaceae), the second most species-rich C(4) family. A sedge phylogeny based on two plastome genes (rbcL and ndhF) has previously identified six fully C(4) clades. Here, a relaxed molecular clock was used to calibrate this tree and showed that the first C(4) acquisition occurred in this family between 19.6 and 10.1 Ma. According to analyses of PEPC-encoding genes (ppc), at least five distinct C(4) origins are present in sedges. Two C(4) Eleocharis species, which were unrelated in the plastid phylogeny, acquired their C(4)-specific PEPC genes from a single source, probably through reticulate evolution or a horizontal transfer event. Acquisitions of C(4) PEPC in sedges have been driven by positive selection on at least 16 codons (3.5% of the studied gene segment). These sites underwent parallel genetic changes across the five sedge C(4) origins. Five of these sites underwent identical changes also in grass and eudicot C(4) lineages, indicating that genetic convergence is most important within families but that identical genetic changes occurred even among distantly related taxa. These lines of evidence give new insights into the constraints that govern molecular evolution.
Resumo:
Little is known about the ecology of soil inoculants used for pathogen biocontrol, biofertilization and bioremediation under field conditions. We investigated the persistence and the physiological states of soil-inoculated Pseudomonas protegens (previously Pseudomonas fluorescens) CHA0 (108 CFU g−1 surface soil) in different soil microbial habitats in a planted ley (Medicago sativa L.) and an uncovered field plot. At 72 days, colony counts of the inoculant were low in surface soil (uncovered plot) and earthworm guts (ley plot), whereas soil above the plow pan (uncovered plot), and the rhizosphere and worm burrows present until 1.2 m depth (ley plot) were survival hot spots (105-106 CFU g−1 soil). Interestingly, strain CHA0 was also detected in the subsoil of both plots, at 102-105 CFU g−1 soil between 1.8 and 2 m depth. However, non-cultured CHA0 cells were also evidenced based on immunofluorescence microscopy. Kogure's direct viable counts of nutrient-responsive cells showed that many more CHA0 cells were in a viable but non-culturable (VBNC) or a non-responsive (dormant) state than in a culturable state, and the proportion of cells in those non-cultured states depended on soil microbial habitat. At the most, cells in a VBNC state amounted to 34% (above the plow pan) and those in a dormant state to 89% (in bulk soil between 0.6 and 2 m) of all CHA0 cells. The results indicate that field-released Pseudomonas inoculants may persist at high cell numbers, even in deeper soil layers, and display a combination of different physiological states whose prevalence fluctuates according to soil microbial habitats.
Resumo:
According to prevailing ecological theory one would expect the most stable vegetation on sites which are least disturbed (Odum 1971). According to theory one would also expect the most diversity of species on undisturbed sites (Odum 1971). This stable and diverse community would be produced over a period of many years through a process of plant succession where annual herbs are replaced by perennial herbs and finally woody plants would come to dominate and perpetuate the community. Another ecological theory holds that the complexity (structure and species diversity) of a plant community is dependent upon the amount of disturbance to which it is subjected (Woodwell, 1970). According to this theory the normal succession of a plant community through its various stages may be arrested at some point depending upon the nature and severity of the disturbance. In applying these theories to roadside vegetation it becomes apparent that mass herbicide spraying and extensive mowing of roadsides has produced a relatively simple and unstable vegetation. It follows that if disturbances were reduced not only would the roadside plant community increase in stability but maintenance costs and energy usage would be reduced. In this study we have investigated several aspects of reduced disturbances on roadside vegetation. Research has centered on the effectiveness of spot spraying techniques on noxious weed control, establishment of native grass cover where ditch cleaning and other disturbance has left the bare soil exposed and the response of roadside vegetation when released from annual mass spraying.
Resumo:
In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA), in the middle slope - Xanthic Haplustox (LA), at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC") and, at the bottom of the palm swamp - Typic Albaquult (GXbd). These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A) and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis and all physical and chemical properties of the soils at the footslope and the bottom of the palm swamp of the "chapadas" of the Alto Jequitinhonha region are strongly influenced by the occurrence of ground water on the surface or near the surface all year long, at present and/or in the past. Total concentrations of iron oxides, Fe d and Fe o in soils of the toposequence studied are related to the past and/or present soil colors and drainage conditions.
Resumo:
Palm swanp formations, the so-called veredas, typically occur in the Brazilian biome known as "Cerrado" (savanna-like vegetation), especially on flattened areas or tablelands (chapadas). The aim of this study was to characterize the mineralogy and micromorphology of soil materials from a representative toposequence of the watershed of the vereda Lagoa do Leandro, located in Minas Novas, state of Minas Gerais, Brazil, on plains in the region of the upper Jequitinhonha valley, emphasizing essential aspects of their genesis and landscape evolution. The toposequence is underlain by rocks of the Macaúbas group and covered with detrital and metamorphic rocks (schists of Proterozoic diamictites). The soil profiles were first pedologically described; samples of the disturbed and undisturbed soils were collected from all horizons for further micromorphological and mineralogical analyses. The mineralogical analysis was mainly based on powder X ray diffractometry (XRD) and micromorphological descriptions of thin sections under a petrographic microscope. The soils from the bottom to the top of this toposequence were classified as: Typic Albaquult (GXbd), Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC"), Xanthic Haplustox (LA) and Typic Haplustox (LVA). The clay mineralogy of all soils was found to be dominated by kaolinite. In soil of LA and LVA, the occurrence of goethite, gibbsite, and anatase was evidenced; "LAC" also contained anatase and the GXbd, illite, anatase, and traces of vermiculite. The micromorphological analyses of the LVA, LA and "LAC" soils showed the prevalence of a microaggregate-like or granular microstructure, and aggregate porosity has a stacked/packed structure, which is typical of Oxisols. A massive structure was observed in GXbd material, with the presence of illuviation cutans of clay minerals and iron compounds. Paleogleissolos, which are strongly weathered, due to the action of the excavating fauna , and resulted in the present "LAC". The GXbd at the base of the vereda preserved the physical, mineralogical and micromorphological properties that are typical of a pedogenesis with a strong influence of long dry periods.
Resumo:
Wastewater application to soil is an alternative for fertilization and water reuse. However, particular care must be taken with this practice, since successive wastewater applications can cause soil salinization. Time-domain reflectometry (TDR) allows for the simultaneous and continuous monitoring of both soil water content and apparent electrical conductivity and thus for the indirect measurement of the electrical conductivity of the soil solution. This study aimed to evaluate the suitability of TDR for the indirect determination of the electrical conductivity (ECse) of the saturated soil extract by using an empirical equation for the apparatus TDR Trase 6050X1. Disturbed soil samples saturated with swine wastewater were used, at soil proportions of 0, 0.45, 0.90, 1.80, 2.70, and 3.60 m³ m-3. The probes were equipped with three handmade 0.20 cm long rods. The fit of the empirical model that associated the TDR measured values of electrical conductivity (EC TDR) to ECse was excellent, indicating this approach as suitable for the determination of electrical conductivity of the soil solution.
Resumo:
We investigated the ecogeographic characteristics of 118 Swiss plant species listed as those deserving highest conservation priority in a national conservation guide and classified them into the seven Rabinowitz' rarity types, taking geographic distribution, habitat rarity and local population size into account. Our analysis revealed that species with high conservation priority in Switzerland mostly have a very restricted geographic distribution in Switzerland and generally occur in rare habitats, but do not necessarily constitute small populations and are generally not endemics on a global scale. Moreover, species that are geographically very restricted on a regional scale are not generally restricted on a global scale. By analysing relationships between rarity and IUCN extinction risks for Switzerland, we demonstrated that species with the highest risk of extinction are those with the most restricted geographic distribution; whereas species with lower risk of extinction (but still high conservation priority) include many regional endemics. Habitat rarity and local population size appeared to be of minor importance for the assessment of extinction risk in Switzerland, but the total number of fulfilled rarity criteria still correlated positively with the severity of extinction risk. Our classification is the first preliminary assessment of the relative importance of each rarity type among endangered plant species of the Swiss flora and our results underline the need to distinguish between a regional and a global responsibility for the conservation of rare and endangered species.
Resumo:
1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.
Resumo:
La faune amphibienne du bassin de l'Aubonne et de ses affluents entre Ballens et Allaman a été recensée durant deux campagnes de terrain en 2000 et 2001. Douze espèces d'amphibiens ont été observées sur 63 sites répartis sur près de 130 km2. Plus des deux tiers des espèces amphibiennes de Suisse sont représentées dans le secteur 1Laboratoire de Biologie de la Conservation, Institut d'Ecologie, Bâtiment de Biologie CH-1015 Dorigny E-mail: Jerome.Pellet@ie-zea.unil.ch CODEN: BSVAA6 © Société vaudoise des Sciences naturelles Droits de reproduction réservés 42 J. Pellet, S. Dubey et S. Hoehn étudié. Des cartes illustrent la distribution de chaque espèce. Une régression logistique appliquée à chaque espèce tente de mettre en évidence une relation entre les données de présence et 23 paramètres d'habitats mesurés dans 48 sites. Dans 5 cas, un ou deux paramètres d'habitat peuvent être mis en relation avec la répartition de l'amphibien en question. Ainsi, le crapaud commun est positivement corrélé avec la proportion de végétation érigée recouvrant les plans d'eau et négativement corrélé avec l'altitude. Le crapaud calamite est lui fortement lié aux paysages rudéraux et gravières, tandis que la répartition des grenouilles rousses et rieuses est limitée par l'altitude. La rainette verte semble éviter les plans d'eau où la conductivité est trop élevée. Indication dans un paysage rural d'une charge en nitrates, la conductivité d'un plan d'eau peut être considérée comme une mesure indirecte de sa pollution organique. Un suivi du secteur prospecté permettra de connaître l'évolution des populations de chaque espèce présente.
Resumo:
The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.
Resumo:
Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT). The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006), wheat (2007) and maize (2009) of a plot (150 ha), zones with higher and lower yield potential (Z1 and Z2, respectively) were identified. Sampling grids with 16 units (50 x 50 m) and three sampling points per unit were established. The wheat grain yield (GY) and water infiltration capacity (WIC) were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg) levels and the latter to determine soil bulk density (BD), total porosity (TP), macroporosity (Mac), and microporosity (Mic). Soil penetration resistance (PR) and water content (SWC) were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 %) than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between wheat GY and the soil properties TP, SWC and WIC.