980 resultados para Current speed
Resumo:
High Speed Rail (HSR) is rapidly gaining popularity worldwide as a safe and efficient transport option for long-distance travel. Designed to win market shares from air transport, HSR systems optimise their productivity between increasing speeds and station spacing to offer high quality service and gain ridership. Recent studies have investigated the effects that the deployment of HSR infrastructure has on spatial distribution and the economic development of cities and regions. Findings appear mostly positive at higher geographical scales, where HSR links connect major urban centres several hundred kilometres apart and already well positioned within a national or international context. Also, at the urban level, studies have shown regeneration and concentration effects around HSR station areas with positive returns on city’s image and economy. However, doubts persist on the effects of HSR at an intermediate scale, where the accessibility trade off on station spacing limits access to many small and medium agglomerations. Thereby, their ability to participate in the development opportunities facilitated by HSR infrastructure is significantly reduced. The locational advantages deriving from transport improvements appear contrasting especially in regions that tend to have a polycentric structure, where cities may present greater accessibility disparities between those served by HSR and those left behind. This thesis fits in this context where intermediate and regional cities do not directly enjoy the presence of an HSR station while having an existing or planned proximate HSR corridor. With the aim of understanding whether there might be a solution to this apparent incongruity, the research investigates strategies to integrate HSR accessibility at the regional level. While current literature recommends to commit with ancillary investments to the uplift of station areas and the renewal of feeder systems, I hypothesised the interoperability between the HSR and the conventional networks to explore the possibilities offered by mixed traffic and infrastructure sharing. Thus, I developed a methodology to quantify the exchange of benefits deriving from this synergistic interaction. In this way, it was possible to understand which level of service quality offered by alternative transit strategies best facilitates the distribution of accessibility benefits for areas far from actual HSR stations. Therefore, strategies were selected for their type of service capable of regional extensions and urban penetrations, while incorporating a combination of specific advantages (e.g. speed, sub-urbanity, capacity, frequency and automation) in order to emulate HSR quality with increasingly efficient services. The North-eastern Italian macro region was selected as case study to ground the research offering concurrently a peripheral polycentric metropolitan form, the presence of a planned HSR corridor with some portions of HSR infrastructure implementation, and the project to develop a suburban rail service extended regionally. Results show significant distributive potential, in terms of network effects produced in relation with HSR, in increasing proportions for all the strategies considered: a regional metro rail strategy (abbreviated RMR), a regional high speed rail strategy (abbreviated RHSR), a regional light rail transit (abbreviated LRT) strategy, and a non-stopping continuous railway system (abbreviated CRS) strategy. The provision of additional tools to value HSR infrastructure against its accessibility benefits and their regional distribution through alternative strategies beyond the actual HSR stations, would have great implications, both politically and technically, in moving towards new dimensions of HSR evaluation and development.
Resumo:
In Australia, research suggests that up to one quarter of child pedestrian hospitalisations result from driveway run-over incidents (Pinkney et al., 2006). In Queensland, these numbers equate to an average of four child fatalities and 81 children presenting at hospital emergency departments every year (The Commission for Children, Young People and Child Guardian). National comparison shows that these numbers represent a slightly higher per capita rate (23.5% of all deaths). To address this issue, the current research was undertaken with the aim to develop an educative intervention based on data collected from parents and caregivers of young children. Thus, the current project did not seek to use available intervention or educational material, but to develop a new evidence-based intervention specifically targeting driveway run-overs involving young children. To this end, general behavioural and environmental changes that caregivers had undertaken in order to reduce the risk of injury to any child in their care were investigated. Broadly, the first part of this report sought to: • develop a conceptual model of established domestic safety behaviours, and to investigate whether this model could be successfully applied to the driveway setting; • explore and compare sources of knowledge regarding domestic and driveway child safety; and • examine the theoretical implications of current domestic and driveway related behaviour and knowledge among caregivers. The aim of the second part of this research was to develop and test the efficacy of an intervention based on the findings in the first part of the research project. Specifically, it sought to: • develop an educational driveway intervention that is based on current safety behaviours in the domestic setting and informed by existing knowledge of driveway safety and behaviour change theory; and • evaluate its efficacy in a sample of parents and caregivers.
Resumo:
In Australia, speeding remains a substantial contributor to road trauma. The National Road Safety Strategy (2011-2020) highlighted the need to harness community support for current and future speed management strategies. Australia is known for intensive speed camera programs which are both automated and manual, employing covert and overt methods. Recent developments in the area of automated speed enforcement in Australia help to illustrate the important link between community attitudes to speed enforcement and subsequent speed camera policy developments. A perceived lack of community confidence in camera programs prompted reviews in New South Wales and Victoria in 2011 by the jurisdictional Auditor-General. This paper explores automated speed camera enforcement in Australia with particular reference to the findings of these two reports as they relate to the level of public support for and community attitudes towards automated speed enforcement. It also provides comment on the evolving nature of automated speed enforcement according to previously identified controversies and dilemmas associated with speed camera programs.
Resumo:
Young male drivers are over-represented in road-related fatalities. Speeding represents a pervasive and significant contributor to road trauma. Anti-speeding messages represent a long-standing strategy aimed at discouraging drivers from speeding. These messages, however, have not always achieved their persuasive objectives which may be due, in part, to them not always targeting the most salient beliefs underpinning the speeding behavior of particular driver groups. The current study elicited key beliefs underpinning speeding behavior as well as strategies used to avoid speeding, using a well-validated belief-based model, the Theory of Planned Behavior and in-depth qualitative methods. To obtain the most comprehensive understanding about the salient beliefs and strategies of young male drivers, how such beliefs and strategies compared with those of drivers of varying ages and gender, was also explored. Overall, 75 males and females (aged 17-25 or 30-55 years) participated in group discussions. The findings revealed beliefs that were particularly relevant to young males and that would likely represent key foci for developing message content. For instance, the need to feel in control and the desire to experience positive affect when driving were salient advantages; while infringements were a salient disadvantage and, in particular, the loss of points and the implications associated with potential licence loss as opposed to the monetary (fine) loss (behavioral beliefs). For normative influences, young males appeared to hold notable misperceptions (compared with other drivers, such as young females); for instance, young males believed that females/girlfriends were impressed by their speeding. In the case of control beliefs, the findings revealed low perceptions of control with respect to being able to not speed and a belief that something “extraordinary” would need to happen for a young male driver to lose control of their vehicle while speeding. The practical implications of the findings, in terms of providing suggestions for devising the content of anti-speeding messages, are discussed.
Resumo:
This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase and constant-frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two-series-connected-and-one-isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub- and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. A dynamic mathematical model, which accurately predicts the behavior of the proposed generator, is also presented and implemented in MATLAB/Simulink. Experimental results of a 2-kW prototype generator under various operating conditions are presented, together with theoretical results, to demonstrate the viability of the TSCAOI power generation. The proposed generator is simple and capable of both storage and retrieval of energy through its excitation winding and is expected to be suitable for applications, such as small wind turbines and microhydro systems.
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Resumo:
The contamination of electrical insulators is one of the major contributors to the risk of operation outages in electrical substations, especially in coastal zones with high salinity levels and atmospheric pollution. By using the measurement of leakage-currents, which is one of the main indicators of contamination in insulators, this work seeks to the determine the correlation with climatic variables, such as ambient temperature, relative humidity, solar irradiance, atmospheric pressure, and wind speed and direction. The results obtained provide an input to the behaviour of the leakage current under atmospheric conditions that are particular to the Caribbean coast of Colombia. Spearman’s rank correlation coefficients and principal component analysis are utilised to determine the significant relationships among the different variables under consideration. The necessary information for the study was obtained via historical databases of both atmospheric variables and the leakage current measured in over a period of one year in a 220-kV potential transformer insulator. We identified the influencing factors of temperature, humidity, radiation, wind speed and direction on the magnitude of the leakage current as the most relevant.
Resumo:
Aggressive driving has been associated with engagement in other risky driving behaviours, such as speeding; while drivers using their mobile phones have an increased crash risk, despite the tendency to reduce their speed. Research has amassed separately for mobile phone use and aggressive driving among younger drivers, however little is known about the extent to which these behaviours may function independently and in combination to influence speed selection behaviour. The main aim of the current study was to investigate the effect of driver aggression (measured by the Driving Anger Expression Inventory) and mobile phone use on speed selection by young drivers. The CARRS-Q advanced driving simulator was used to test the speed selection of drivers aged 18 to 26 years (N = 32) in a suburban (60kph zone) driving context. A 2 (level of driving anger expression: low, high) X 3 (mobile phone use condition: baseline, hands-free, hand-held) mixed factorial ANOVA was conducted with speed selection as the dependent variable. Results revealed a significant main effect for mobile phone use condition such that speed selection was lowest for the hand-held condition and highest for the baseline condition. Speed selection, however, was not significantly different across the levels of driving anger expression; nor was there a significant interaction effect between the mobile phone use and driving anger expression. As young drivers are over-represented in road crash statistics, future research should further investigate the combined impact of driver aggression and mobile phone use on speed selection.
Resumo:
In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.
Resumo:
Aggressive driving has been associated with engagement in other risky driving behaviours, such as speeding; while drivers using their mobile phones have an increased crash risk, despite the tendency to reduce their speed. Research has amassed separately for mobile phone use and aggressive driving among younger drivers, however little is known about the extent to which these behaviours may function independently and in combination to influence speed selection behaviour. The main aim of the current study was to investigate the effect of driver aggression (measured by the Driving Anger Expression Inventory) and mobile phone use on speed selection by young drivers. The CARRS-Q advanced driving simulator was used to test the speed selection of drivers aged 18 to 26 years (N = 32) in a suburban (60kph zone) driving context. A 2 (level of driving anger expression: low, high) X 3 (mobile phone use condition: baseline, hands-free, hand-held) mixed factorial ANOVA was conducted with speed selection as the dependent variable. Results revealed a significant main effect for mobile phone use condition such that speed selection was lowest for the hand-held condition and highest for the baseline condition. Speed selection, however, was not significantly different across the levels of driving anger expression; nor was there a significant interaction effect between the mobile phone use and driving anger expression. As young drivers are over-represented in road crash statistics, future research should further investigate the combined impact of driver aggression and mobile phone use on speed selection.
Resumo:
Aim: To systematically review the literature investigating the incidence of fatal and or nonfatal low-speed vehicle run-over (LSVRO) incidents in children aged 0–15 years. Methods: The following databases were searched using specific search terms, from their date of conception up to June 2011: Cochrane Library, Medline, CINAHL, Embase, AMI, Sociological Abstracts, ERIC, PsycArticles, PsycInfo, Urban Studies and Planning; Australian Criminology Database; Dissertations and Thesis; Academic Research Library; Social Services Abstracts; Family and Society; Scopus; and Web of Science. A total of 128 articles were identified in the databases (33 found by hand searching). The title and abstract of these were read, and 102 were removed because they were not primary research articles relating to LSVRO-type injuries. Twenty-six articles were assessed against the inclusion (reporting population level incidence rates) and exclusion criteria, 19 of which were excluded, leaving a total of five articles for inclusion in the review. Findings: Five studies were identified that met the inclusion criteria. The incidence rate in nonfatal LSVRO events varied in the range of 7.09 to 14.79 per 100,000 and from 0.63 to 3.2 per 100,000 in fatal events. Discussion: Using International Classification of Diseases codes for classifying fatal or nonfatal LSVRO incidents is problematic as there is no specific code for LSVRO. The current body of research is void of a comprehensive secular population data analysis. Only with an improved spectrum of incidence rates will appropriate evaluation of this problem be possible, and this will inform nursing prevention interventions. The effect of LSVRO incidents is clearly understudied. More research is required to address incidence rates in relation to culture, environment, risk factors, car design, and injury characteristics. Conclusions: Thevlack of nursing research or policy around this area of injury, most often to children, indicates a field of inquiry and policy development that needs attention.
Resumo:
Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
The future functioning of the digital economy is inextricably linked to the use of high-speed broadband networks. As evidenced by recent Australian federal election campaigns, a focus has been on the rollout of the physical networks. The research seeks to determine the effectiveness of the current NBN rollout as a measure of Australia’s progression towards a fully functioning digital economy. The author examines submissions to the recent RTIRC Telecommunications Review 2015 in order to ascertain the NBN’s current impact upon Australia’s digital economy.
Resumo:
An important limitation of the existing IGC algorithms, is that they do not explicitly exploit the inherent time scale separation that exist in aerospace vehicles between rotational and translational motions and hence can be ineffective. To address this issue, a two-loop partial integrated guidance and control (PIGC) scheme has been proposed in this paper. In this design, the outer loop uses a recently developed, computationally efficient, optimal control formulation named as model predictive static programming. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the Dynamic inversion philosophy. Uncommonly, Six-Degree of freedom (Six-DOF) model is used directly in both the loops. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Comparative studies of PIGC with one loop IGC and conventional three loop design were carried out for engaging incoming high speed target. Simulation studies demonstrate the usefulness of this method.