946 resultados para Corpus-based phraseology
Resumo:
Background Up to one-third of people affected by cancer experience ongoing psychological distress and would benefit from screening followed by an appropriate level of psychological intervention. This rarely occurs in routine clinical practice due to barriers such as lack of time and experience. This study investigated the feasibility of community-based telephone helpline operators screening callers affected by cancer for their level of distress using a brief screening tool (Distress Thermometer), and triaging to the appropriate level of care using a tiered model. Methods Consecutive cancer patients and carers who contacted the helpline from September-December 2006 (n = 341) were invited to participate. Routine screening and triage was conducted by helpline operators at this time. Additional socio-demographic and psychosocial adjustment data were collected by telephone interview by research staff following the initial call. Results The Distress Thermometer had good overall accuracy in detecting general psychosocial morbidity (Hospital Anxiety and Depression Scale cut-off score ≥ 15) for cancer patients (AUC = 0.73) and carers (AUC = 0.70). We found 73% of participants met the Distress Thermometer cut-off for distress caseness according to the Hospital Anxiety and Depression Scale (a score ≥ 4), and optimal sensitivity (83%, 77%) and specificity (51%, 48%) were obtained with cut-offs of ≥ 4 and ≥ 6 in the patient and carer groups respectively. Distress was significantly associated with the Hospital Anxiety and Depression Scale scores (total, as well as anxiety and depression subscales) and level of care in cancer patients, as well as with the Hospital Anxiety and Depression Scale anxiety subscale for carers. There was a trend for more highly distressed callers to be triaged to more intensive care, with patients with distress scores ≥ 4 more likely to receive extended or specialist care. Conclusions Our data suggest that it was feasible for community-based cancer helpline operators to screen callers for distress using a brief screening tool, the Distress Thermometer, and to triage callers to an appropriate level of care using a tiered model. The Distress Thermometer is a rapid and non-invasive alternative to longer psychometric instruments, and may provide part of the solution in ensuring distressed patients and carers affected by cancer are identified and supported appropriately.
Resumo:
Increasingly, national and international governments have a strong mandate to develop national e-health systems to enable delivery of much-needed healthcare services. Research is, therefore, needed into appropriate security and reliance structures for the development of health information systems which must be compliant with governmental and alike obligations. The protection of e-health information security is critical to the successful implementation of any e-health initiative. To address this, this paper proposes a security architecture for index-based e-health environments, according to the broad outline of Australia’s National E-health Strategy and National E-health Transition Authority (NEHTA)’s Connectivity Architecture. This proposal, however, could be equally applied to any distributed, index-based health information system involving referencing to disparate health information systems. The practicality of the proposed security architecture is supported through an experimental demonstration. This successful prototype completion demonstrates the comprehensibility of the proposed architecture, and the clarity and feasibility of system specifications, in enabling ready development of such a system. This test vehicle has also indicated a number of parameters that need to be considered in any national indexed-based e-health system design with reasonable levels of system security. This paper has identified the need for evaluation of the levels of education, training, and expertise required to create such a system.
Resumo:
This paper reports an empirical study on measuring transit service reliability using the data from a Web-based passenger survey on a major transit corridor in Brisbane, Australia. After an introduction of transit service reliability measures, the paper presents the results from the case study including study area, data collection, and reliability measures obtained. This includes data exploration of boarding/arrival lateness, in-vehicle time variation, waiting time variation, and headway adherence. Impacts of peak-period effects and separate operation on service reliability are examined. Relationships between transit service characteristics and passenger waiting time are also discussed. A summary of key findings and an agenda of future research are offered in conclusions.
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
In this paper we extend the concept of speaker annotation within a single-recording, or speaker diarization, to a collection wide approach we call speaker attribution. Accordingly, speaker attribution is the task of clustering expectantly homogenous intersession clusters obtained using diarization according to common cross-recording identities. The result of attribution is a collection of spoken audio across multiple recordings attributed to speaker identities. In this paper, an attribution system is proposed using mean-only MAP adaptation of a combined-gender UBM to model clusters from a perfect diarization system, as well as a JFA-based system with session variability compensation. The normalized cross-likelihood ratio is calculated for each pair of clusters to construct an attribution matrix and the complete linkage algorithm is employed to conduct clustering of the inter-session clusters. A matched cluster purity and coverage of 87.1% was obtained on the NIST 2008 SRE corpus.