912 resultados para Copying machines
Resumo:
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. The research work presented here is based on an empirical study of the process of synthesis of multiple state mechanical devices. As a background to the work, the paper explores concepts of what mechanical device, state, single state and multiple state are, and in the context of the above observational studies, attempts to identify the outstanding issues for supporting multiple state synthesis of mechanical devices.
Resumo:
This paper proposes a framework of designing for conceptual and early embodiment design that uses physical laws and effects explicitly as a central aspect for designing. This is especially important in domains that make explicit use of physical laws and effects in their design, such as novel sensors. The objectives of the paper are: (a) Develop a model, (b) Empirically evaluate the model and (c) Propose a framework. The model is developed by integrating the activity- and outcome-based elements. The model is validated empirically by analyzing protocols of design sessions to find instances of activities and outcomes. Based on the findings, a framework is proposed on how designing should be done. Elements of GEMS (Generate-Evaluate-Modify-Select) and SAPPhIRE (State change-Action-Part-Phenomenon-Input-oRgan-Effect) are used for developing the model.Empirical evaluation confirms that designing can be modeled with the activity and outcome elements. The paper concludes with the identification of areas that require support and future work.
Resumo:
This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.
Resumo:
We consider the problem of scheduling semiconductor burn-in operations, where burn-in ovens are modelled as batch processing machines. Most of the studies assume that ready times and due dates of jobs are agreeable (i.e., ri < rj implies di ≤ dj). In many real world applications, the agreeable property assumption does not hold. Therefore, in this paper, scheduling of a single burn-in oven with non-agreeable release times and due dates along with non-identical job sizes as well as non-identical processing of time problem is formulated as a Non-Linear (0-1) Integer Programming optimisation problem. The objective measure of the problem is minimising the maximum completion time (makespan) of all jobs. Due to computational intractability, we have proposed four variants of a two-phase greedy heuristic algorithm. Computational experiments indicate that two out of four proposed algorithms have excellent average performance and also capable of solving any large-scale real life problems with a relatively low computational effort on a Pentium IV computer.
Resumo:
Modeling the performance behavior of parallel applications to predict the execution times of the applications for larger problem sizes and number of processors has been an active area of research for several years. The existing curve fitting strategies for performance modeling utilize data from experiments that are conducted under uniform loading conditions. Hence the accuracy of these models degrade when the load conditions on the machines and network change. In this paper, we analyze a curve fitting model that attempts to predict execution times for any load conditions that may exist on the systems during application execution. Based on the experiments conducted with the model for a parallel eigenvalue problem, we propose a multi-dimensional curve-fitting model based on rational polynomials for performance predictions of parallel applications in non-dedicated environments. We used the rational polynomial based model to predict execution times for 2 other parallel applications on systems with large load dynamics. In all the cases, the model gave good predictions of execution times with average percentage prediction errors of less than 20%
Resumo:
In this paper, we propose an approach, using Coloured Petri Nets (CPN) for modelling flexible manufacturing systems. We illustrate our methodology for a Flexible Manufacturing Cell (FMC) with three machines and three robots. We also consider the analysis of the FMC for deadlocks using the invariant analysis of CPNs.
Resumo:
The subject of transients in polyphase induction motors and synchronous machines has been studied in very great detail by several investigators, but no published literature exists dealing exclusively with the analysis of the problem of transients in single-phase induction motors. This particular problem has been studied in this paper by applying the Laplace transform. The results of actual computation of the currents and developed electrical torque are compared with the data obtained by setting up the integro-differential equations of the machine on an electronic differential analyzer. It is shown that if the motor is switched on to the supply when the potential passes through its zero value, there is a pulsating fundamental frequency torque superimposed on the average steady-state unidirectional torque. If, on the other hand, the switch is closed when the applied potential passes through its maximum value, the developed electrical torque settles down to its final steady-state value during the first cycle of the supply voltage.
Resumo:
The paper presents a graphical-numerical method for determining the transient stability limits of a two-machine system under the usual assumptions of constant input, no damping and constant voltage behind transient reactance. The method presented is based on the phase-plane criterion,1, 2 in contrast to the usual step-by-step and equal-area methods. For the transient stability limit of a two-machine system, under the assumptions stated, the sum of the kinetic energy and the potential energy, at the instant of fault clearing, should just be equal to the maximum value of the potential energy which the machines can accommodate with the fault cleared. The assumption of constant voltage behind transient reactance is then discarded in favour of the more accurate assumption of constant field flux linkages. Finally, the method is extended to include the effect of field decrement and damping. A number of examples corresponding to each case are worked out, and the results obtained by the proposed method are compared with those obtained by the usual methods.
Resumo:
Power semiconductor devices have finite turn on and turn off delays that may not be perfectly matched. In a leg of a voltage source converter, the simultaneous turn on of one device and the turn off of the complementary device will cause a DC bus shoot through, if the turn off delay is larger than the turn on delay time. To avoid this situation it is common practice to blank the two complementary devices in a leg for a small duration of time while switching, which is called dead time. This paper proposes a logic circuit for digital implementation required to control the complementary devices of a leg independently and at the same time preventing cross conduction of devices in a leg, and while providing accurate and stable dead time. This implementation is based on the concept of finite state machines. This circuit can also block improper PWM pulses to semiconductor switches and filters small pulses notches below a threshold time width as the narrow pulses do not provide any significant contribution to average pole voltage, but leads to increased switching loss. This proposed dead time logic has been implemented in a CPLD and is implemented in a protection and delay card for 3- power converters.
Resumo:
In this paper, we consider the problem of time series classification. Using piecewise linear interpolation various novel kernels are obtained which can be used with Support vector machines for designing classifiers capable of deciding the class of a given time series. The approach is general and is applicable in many scenarios. We apply the method to the task of Online Tamil handwritten character recognition with promising results.
Resumo:
This letter presents a microprocessor-based algorithm for calculating symmetrical components from the distorted transient voltage and current signals in a power system. The fundamental frequency components of the 3-phase signals are first extracted using an algorithm based on Haar functions and then "symmetrical-component transformation is applied to obtain the sequence components. The algorithm presented is computationally efficient and fast. This algorithm is better suited for application in microprocessor-based protection schemes of synchronous and induction machines.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.
Resumo:
In this paper, we use optical flow based complex-valued features extracted from video sequences to recognize human actions. The optical flow features between two image planes can be appropriately represented in the Complex plane. Therefore, we argue that motion information that is used to model the human actions should be represented as complex-valued features and propose a fast learning fully complex-valued neural classifier to solve the action recognition task. The classifier, termed as, ``fast learning fully complex-valued neural (FLFCN) classifier'' is a single hidden layer fully complex-valued neural network. The neurons in the hidden layer employ the fully complex-valued activation function of the type of a hyperbolic secant function. The parameters of the hidden layer are chosen randomly and the output weights are estimated as the minimum norm least square solution to a set of linear equations. The results indicate the superior performance of FLFCN classifier in recognizing the actions compared to real-valued support vector machines and other existing results in the literature. Complex valued representation of 2D motion and orthogonal decision boundaries boost the classification performance of FLFCN classifier. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mobile P2P technology provides a scalable approach for content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a single item of content (e. g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a destination (interested in the content) or a potential relay (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the linear threshold model. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive joint fluid limit ordinary differential equations. We then study the selection of parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.