950 resultados para Copy number variations and polymorphisms
Resumo:
The Hall Effect Thruster (HET) is a type of satellite electric propulsion device initially developed in the 1960’s independently by USA and the former USSR. The development continued in the shadow during the 1970’s in the Soviet Union to reach a mature status from the technological point of view in the 1980’s. In the 1990’s the advanced state of this Russian technology became known in western countries, which rapidly restarted the analysis and development of modern Hall thrusters. Currently, there are several companies in USA, Russia and Europe manufacturing Hall thrusters for operational use. The main applications of these thrusters are low-thrust propulsion of interplanetary probes, orbital raising of satellites and stationkeeping of geostationary satellites. However, despite the well proven in-flight experience, the physics of the Hall Thruster are not completely understood yet. Over the last two decades large efforts have been dedicated to the understanding of the physics of Hall Effect thrusters. However, the so-called anomalous diffusion, short name for an excessive electron conductivity along the thruster, is not yet fully understood as it cannot be explained with classical collisional theories. One commonly accepted explanation is the existence of azimuthal oscillations with correlated plasma density and electric field fluctuations. In fact, there is experimental evidence of the presence of an azimuthal oscillation in the low frequency range (a few kHz). This oscillation, usually called spoke, was first detected empirically by Janes and Lowder in the 1960s. More recently several experiments have shown the existence of this type of oscillation in various modern Hall thrusters. Given the frequency range, it is likely that the ionization is the cause of the spoke oscillation, like for the breathing mode oscillation. In the high frequency range (a few MHz), electron-drift azimuthal oscillations have been detected in recent experiments, in line with the oscillations measured by Esipchuk and Tilinin in the 1970’s. Even though these low and high frequency azimuthal oscillations have been known for quite some time already, the physics behind them are not yet clear and their possible relation with the anomalous diffusion process remains an unknown. This work aims at analysing from a theoretical point of view and via computer simulations the possible relation between the azimuthal oscillations and the anomalous electron transport in HET. In order to achieve this main objective, two approaches are considered: local linear stability analyses and global linear stability analyses. The use of local linear stability analyses shall allow identifying the dominant terms in the promotion of the oscillations. However, these analyses do not take into account properly the axial variation of the plasma properties along the thruster. On the other hand, global linear stability analyses do account for these axial variations and shall allow determining how the azimuthal oscillations are promoted and their possible relation with the electron transport.
Resumo:
The role of spliced leader RNA (SL RNA) in trans-splicing in Caenorhabditis elegans has been studied through a combination of in vitro mutagenesis and in vivo complementation of rrs-1 mutant nematodes, which lack endogenous SL1 RNA. Three classes of mutant SL1 RNAs have been found—those that rescue the lethal phenotype at low concentration of transforming DNA, those that rescue at high but not low concentration, and those that do not rescue at all. These studies showed that some mutations in the otherwise highly conserved 22-nt spliced leader are tolerated for splicing and post-splicing events. A longer spliced leader also can be tolerated but only when present in high copy number. Changes in the first 16 nucleotides result in the appearance of no SL RNA, consistent with the in vitro studies by others showing that the SL1 RNA promoter partly resides within the spliced leader sequence.
Resumo:
Analysis of the genetic changes in human tumors is often problematical because of the presence of normal stroma and the limited availability of pure tumor DNA. However, large amounts of highly reproducible “representations” of tumor and normal genomes can be made by PCR from nanogram amounts of restriction endonuclease cleaved DNA that has been ligated to oligonucleotide adaptors. We show here that representations are useful for many types of genetic analyses, including measuring relative gene copy number, loss of heterozygosity, and comparative genomic hybridization. Representations may be prepared even from sorted nuclei from fixed and archived tumor biopsies.
Resumo:
The nuclear and mitochondrial genomes coevolve to optimize approximately 100 different interactions necessary for an efficient ATP-generating system. This coevolution led to a species-specific compatibility between these genomes. We introduced mitochondrial DNA (mtDNA) from different primates into mtDNA-less human cells and selected for growth of cells with a functional oxidative phosphorylation system. mtDNA from common chimpanzee, pigmy chimpanzee, and gorilla were able to restore oxidative phosphorylation in the context of a human nuclear background, whereas mtDNA from orangutan, and species representative of Old-World monkeys, New-World monkeys, and lemurs were not. Oxygen consumption, a sensitive index of respiratory function, showed that mtDNA from chimpanzee, pigmy chimpanzee, and gorilla replaced the human mtDNA and restored respiration to essentially normal levels. Mitochondrial protein synthesis was also unaltered in successful “xenomitochondrial cybrids.” The abrupt failure of mtDNA from primate species that diverged from humans as recently as 8–18 million years ago to functionally replace human mtDNA suggests the presence of one or a few mutations affecting critical nuclear–mitochondrial genome interactions between these species. These cellular systems provide a demonstration of intergenus mtDNA transfer, expand more than 20-fold the number of mtDNA polymorphisms that can be analyzed in a human nuclear background, and provide a novel model for the study of nuclear–mitochondrial interactions.
Resumo:
The gene-mutation-cancer hypothesis holds that mutated cellular protooncogenes, such as point-mutated proto-ras, “play a dominant part in cancer,” because they are sufficient to transform transfected mouse cell lines in vitro [Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York)]. However, in cells transformed in vitro mutated human ras genes are expressed more than 100-fold than in the cancers from which they are isolated. In view of the discrepancy between the very low levels of ras transcription in cancers and the very high levels in cells transformed in vitro, we have investigated the minimal level of human ras expression for transformation in vitro. Using point-mutated human ras genes recombined with different promoters from either human metallothionein-IIA or human fibronectin or from retroviruses we found dominant in vitro transformation of the mouse C3H cell line only with ras genes linked to viral promoters. These ras genes were expressed more than 120-fold higher than are native ras genes of C3H cells. The copy number of transfected ras genes ranged from 2–6 in our system. In addition, nondominant transformation was observed in a small percentage (2–7%) of C3H cells transfected with ras genes that are expressed less than 20 times higher than native C3H ras genes. Because over 90% of cells expressing ras at this moderately enhanced level were untransformed, transformation must follow either a nondominant ras mechanism or a non-ras mechanism. We conclude that the mutated, but normally expressed, ras genes found in human and animal cancers are not likely to “play a dominant part in cancer.” The conclusion that mutated ras genes are not sufficient or dominant for cancer is directly supported by recent discoveries of mutated ras in normal animals, and in benign human tissue, “which has little potential to progress” [Jen, J., Powell, S. M., Papadopoulos, N., Smith, K. J., Hamilton, S. R., Vogelstein, B. & Kinzler, K. W. (1994) Cancer Res. 54, 5523–5526]. Even the view that mutated ras is necessary for cancer is hard to reconcile with (i) otherwise indistinguishable cancers with and without ras mutations, (ii) metastases of the same human cancers with and without ras mutations, (iii) retroviral ras genes that are oncogenic without point mutations, and (iv) human tumor cells having spontaneously lost ras mutation but not tumorigencity.
Resumo:
In 1979, Lewontin and I borrowed the architectural term “spandrel” (using the pendentives of San Marco in Venice as an example) to designate the class of forms and spaces that arise as necessary byproducts of another decision in design, and not as adaptations for direct utility in themselves. This proposal has generated a large literature featuring two critiques: (i) the terminological claim that the spandrels of San Marco are not true spandrels at all and (ii) the conceptual claim that they are adaptations and not byproducts. The features of the San Marco pendentives that we explicitly defined as spandrel-properties—their necessary number (four) and shape (roughly triangular)—are inevitable architectural byproducts, whatever the structural attributes of the pendentives themselves. The term spandrel may be extended from its particular architectural use for two-dimensional byproducts to the generality of “spaces left over,” a definition that properly includes the San Marco pendentives. Evolutionary biology needs such an explicit term for features arising as byproducts, rather than adaptations, whatever their subsequent exaptive utility. The concept of biological spandrels—including the examples here given of masculinized genitalia in female hyenas, exaptive use of an umbilicus as a brooding chamber by snails, the shoulder hump of the giant Irish deer, and several key features of human mentality—anchors the critique of overreliance upon adaptive scenarios in evolutionary explanation. Causes of historical origin must always be separated from current utilities; their conflation has seriously hampered the evolutionary analysis of form in the history of life.
Resumo:
Although integration of viral DNA into host chromosomes occurs regularly in bacteria and animals, there are few reported cases in plants, and these involve insertion at only one or a few sites. Here, we report that pararetrovirus-like sequences have integrated repeatedly into tobacco chromosomes, attaining a copy number of ≈103. Insertion apparently occurred by illegitimate recombination. From the sequences of 22 independent insertions recovered from a healthy plant, an 8-kilobase genome encoding a previously uncharacterized pararetrovirus that does not contain an integrase function could be assembled. Preferred boundaries of the viral inserts may correspond to recombinogenic gaps in open circular viral DNA. An unusual feature of the integrated viral sequences is a variable tandem repeat cluster, which might reflect defective genomes that preferentially recombine into plant DNA. The recurrent invasion of pararetroviral DNA into tobacco chromosomes demonstrates that viral sequences can contribute significantly to plant genome evolution.
Resumo:
Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.
Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy
Resumo:
It has long been assumed that HIV-1 evolution is best described by deterministic evolutionary models because of the large population size. Recently, however, it was suggested that the effective population size (Ne) may be rather small, thereby allowing chance to influence evolution, a situation best described by a stochastic evolutionary model. To gain experimental evidence supporting one of the evolutionary models, we investigated whether the development of resistance to the protease inhibitor ritonavir affected the evolution of the env gene. Sequential serum samples from five patients treated with ritonavir were used for analysis of the protease gene and the V3 domain of the env gene. Multiple reverse transcription–PCR products were cloned, sequenced, and used to construct phylogenetic trees and to calculate the genetic variation and Ne. Genotypic resistance to ritonavir developed in all five patients, but each patient displayed a unique combination of mutations, indicating a stochastic element in the development of ritonavir resistance. Furthermore, development of resistance induced clear bottleneck effects in the env gene. The mean intrasample genetic variation, which ranged from 1.2% to 5.7% before treatment, decreased significantly (P < 0.025) during treatment. In agreement with these findings, Ne was estimated to be very small (500–15,000) compared with the total HIV-1 RNA copy number. This study combines three independent observations, strong population bottlenecking, small Ne, and selection of different combinations of protease-resistance mutations, all of which indicate that HIV-1 evolution is best described by a stochastic evolutionary model.
Resumo:
A multiple protein–DNA complex formed at a human α-globin locus-specific regulatory element, HS-40, confers appropriate developmental expression pattern on human embryonic ζ-globin promoter activity in humans and transgenic mice. We show here that introduction of a 1-bp mutation in an NF-E2/AP1 sequence motif converts HS-40 into an erythroid-specific locus-control region. Cis-linkage with this locus-control region, in contrast to the wild-type HS-40, allows erythroid lineage-specific derepression of the silenced human ζ-globin promoter in fetal and adult transgenic mice. Furthermore, ζ-globin promoter activities in adult mice increase in proportion to the number of integrated DNA fragments even at 19 copies/genome. The mutant HS-40 in conjunction with human ζ-globin promoter thus can be used to direct position-independent and copy number-dependent expression of transgenes in adult erythroid cells. The data also supports a model in which competitive DNA binding of different members of the NF-E2/AP1 transcription factor family modulates the developmental stage specificity of an erythroid enhancer. Feasibility to reswitch on embryonic/fetal globin genes through the manipulation of nuclear factor binding at a single regulatory DNA motif is discussed.
Resumo:
The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is part of a cytokine gene cluster and is directly linked to a conserved upstream inducible enhancer. Here we examined the in vitro and in vivo functions of the human GM-CSF enhancer and found that it was required for the correctly regulated expression of the GM-CSF gene. An inducible DNase I-hypersensitive site appeared within the enhancer in cell types such as T cells, myeloid cells, and endothelial cells that express GM-CSF, but not in nonexpressing cells. In a panel of transfected cells the human GM-CSF enhancer was activated in a tissue-specific manner in parallel with the endogenous gene. The in vivo function of the enhancer was examined in a transgenic mouse model that also addressed the issue of whether the GM-CSF locus was correctly regulated in isolation from other segments of the cytokine gene cluster. After correction for copy number the mean level of human GM-CSF expression in splenocytes from 11 lines of transgenic mice containing a 10.5-kb human GM-CSF transgene was indistinguishable from mouse GM-CSF expression (99% ± 56% SD). In contrast, a 9.8-kb transgene lacking just the enhancer had a significantly reduced (P = 0.004) and more variable level of activity (29% ± 89% SD). From these studies we conclude that the GM-CSF enhancer is required for the correct copy number-dependent expression of the human GM-CSF gene and that the GM-CSF gene is regulated independently from DNA elements associated with the closely linked IL-3 gene or other members of the cytokine gene cluster.
Resumo:
Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant.
Resumo:
Gene therapy for patients with hemoglobin disorders has been hampered by the inability of retrovirus vectors to transfer globin genes and their cis-acting regulatory sequences into hematopoietic stem cells without rearrangement. In addition, the expression from intact globin gene vectors has been variable in red blood cells due to position effects and retrovirus silencing. We hypothesized that by substituting the globin gene promoter for the promoter of another gene expressed in red blood cells, we could generate stable retrovirus vectors that would express globin at sufficient levels to treat hemoglobinopathies. Recently, we have shown that the human ankyrin (Ank) gene promoter directs position-independent, copy number-dependent expression of a linked γ-globin gene in transgenic mice. We inserted the Ank/Aγ-globin gene into retrovirus vectors that could transfer one or two copies of the Ank/Aγ-globin gene to target cells. Both vectors were stable, transferring only intact proviral sequences into primary mouse hematopoietic stem cells. Expression of Ank/Aγ-globin mRNA in mature red blood cells was 3% (single copy) and 8% (double copy) of the level of mouse α-globin mRNA. We conclude that these novel retrovirus vectors may be valuable for treating a variety of red cell disorders by gene replacement therapy including severe β-thalassemia if the level of expression can be further increased.
Resumo:
Transposable elements are ubiquitous in plant genomes, where they frequently comprise the majority of genomic DNA. The maize genome, which is believed to be structurally representative of large plant genomes, contains single genes or small gene islands interspersed with much longer blocks of retrotransposons. Given this organization, it would be desirable to identify molecular markers preferentially located in genic regions. In this report, the features of a newly described family of miniature inverted repeat transposable elements (MITEs) (called Heartbreaker), including high copy number and polymorphism, stability, and preference for genic regions, have been exploited in the development of a class of molecular markers for maize. To this end, a modification of the AFLP procedure called transposon display was used to generate and display hundreds of genomic fragments anchored in Hbr elements. An average of 52 markers were amplified for each primer combination tested. In all, 213 polymorphic fragments were reliably scored and mapped in 100 recombinant inbred lines derived from a cross between the maize inbreds B73 × Mo17. In this mapping population, Hbr markers are distributed evenly across the 10 maize chromosomes. This procedure should be of general use in the development of markers for other MITE families in maize and in other plant and animal species where MITEs have been identified.
Resumo:
A class of tandemly repeated DNA sequences (TR-1) of 350-bp unit length was isolated from the knob DNA of chromosome 9 of Zea mays L. Comparative fluorescence in situ hybridization revealed that TR-1 elements are also present in cytologically detectable knobs on other maize chromosomes in different proportions relative to the previously described 180-bp repeats. At least one knob on chromosome 4 is composed predominantly of the TR-1 repeat. In addition, several small clusters of the TR-1 and 180-bp repeats have been found in different chromosomes, some not located in obvious knob heterochromatin. Variation in restriction fragment fingerprints and copy number of the TR-1 elements was found among maize lines and among maize chromosomes. TR-1 tandem arrays up to 70 kilobases in length can be interspersed with stretches of 180-bp tandem repeat arrays. DNA sequence analysis and restriction mapping of one particular stretch of tandemly arranged TR-1 units indicate that these elements may be organized in the form of fold-back DNA segments. The TR-1 repeat shares two short segments of homology with the 180-bp repeat. The longest of these segments (31 bp; 64% identity) corresponds to the conserved region among 180-bp repeats. The polymorphism and complex structure of knob DNA suggest that, similar to the fold-back DNA-containing giant transposons in Drosophila, maize knob DNA may have some properties of transposable elements.