858 resultados para Cooperative decisions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) transporter TAP translocates peptides from the cytosol to awaiting MHC class I molecules in the endoplasmic reticulum. TAP is made up of the TAP1 and TAP2 polypeptides, which each possess a nucleotide binding domain (NBD). However, the role of ATP in peptide binding and translocation is poorly understood. We present biochemical and functional evidence that the NBDs of TAP1 and TAP2 are non-equivalent. Photolabeling experiments with 8-azido-ATP demonstrate a cooperative interaction between the two NBDs that can be stimulated by peptide. The substitution of key lysine residues in the Walker A motifs of TAP1 and TAP2 suggests that TAP1-mediated ATP hydrolysis is not essential for peptide translocation but that TAP2-mediated ATP hydrolysis is critical, not only for translocation, but for peptide binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirement for cooperative interactions between multiple synaptic inputs in the induction of long-term potentiation (LTP) and long-term depression (LTD) has been tested at Schaffer collateral synapses with paired recordings from monosynaptically coupled CA3-CA1 cell pairs in rat hippocampal slice cultures. Tetanization of single presynaptic neurons at 50 Hz (repeated 5-7 times for 300-500 ms each) induced only a transient potentiation (< 3 min) of excitatory postsynaptic potentials (EPSPs). Persistent potentiation (> 15 min) was induced only when single presynaptic action potentials were synchronously paired with directly induced postsynaptic depolarizing pulses (repeated 50-100 times). Tetanus-induced potentiation of extracellularly evoked EPSPs lasting > 4 min could only be obtained if the EPSP was > 4 mV. Because unitary EPSP amplitudes average approximately 1 mV, we conclude that high-frequency discharge must occur synchronously] in 4-5 CA3 cells for LTP to be induced in a common postsynaptic CA1 cell. Asynchronous pairing of presynaptic action potentials with postsynaptic depolarizing current pulses (preceding each EPSP by 800 ms) depressed both naive and previously potentiated unitary EPSPs. Likewise, homosynaptic LTD of unitary EPSPs was induced when the presynaptic cell was tetanized at 3 Hz for 3 min, regardless of their amplitude (0.3-3.2 mV). Homosynaptic LTD of extracellularly evoked Schaffer collateral EPSPs < 4 mV could be induced if no inhibitory postsynaptic potential was apparent, but was prevented by eliciting a large inhibitory postsynaptic potential or by injection of hyperpolarizing current in the postsynaptic cell. We conclude that cooperative interactions among multiple excitatory inputs are not required for induction of homosynaptic LTD of unitary EPSPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binding of transcriptional activators to a promoter is a prerequisite process in transcriptional activation. It is well established that the efficiency of activator binding to a promoter is determined by the affinity of direct interactions between the DNA-binding domain of an activator and its specific target sequences. However, I describe here that activator binding to a promoter is augmented in vivo by the effects of two other determinants that have not been generally appreciated: (i) the number of activator binding sites present in a promoter and (ii) the potency of activation domains of activators. Multiple sites within a promoter can cooperatively recruit cognate factors regardless of whether they contain an effective activation domain. This cooperativity can result in the synergistic activation of transcription. The second effect is the enhancement of activator binding to a promoter by the presence of activation domains. In this case, activation domains are not simply tethered to the promoter by the DNA-binding domain but instead assist the DNA-binding domain being tethered onto the promoter. This effect of activation domains on DNA binding is instrumental in determining how potent activators can induce steep transcriptional increases at low concentrations.