945 resultados para Controle fuzzy-PI
Resumo:
This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and ?-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics-namely the class of algebras defined over the real unit interval, the rational unit interval, the hyperreals (all ultrapowers of the real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the real unit interval) and finite chains, respectively-and we survey the known completeness methods and results for prominent logics. We also obtain new interesting relations between the real, rational and (strict) hyperreal semantics, and good characterizations for the completeness with respect to the semantics of finite chains. Finally, all completeness properties and distinguished semantics are also considered for the first-order versions of the logics where a number of new results are proved. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Fixed and wireless networks are increasingly converging towards common connectivity with IP-based core networks. Providing effective end-to-end resource and QoS management in such complex heterogeneous converged network scenarios requires unified, adaptive and scalable solutions to integrate and co-ordinate diverse QoS mechanisms of different access technologies with IP-based QoS. Policy-Based Network Management (PBNM) is one approach that could be employed to address this challenge. Hence, a policy-based framework for end-to-end QoS management in converged networks, CNQF (Converged Networks QoS Management Framework) has been proposed within our project. In this paper, the CNQF architecture, a Java implementation of its prototype and experimental validation of key elements are discussed. We then present a fuzzy-based CNQF resource management approach and study the performance of our implementation with real traffic flows on an experimental testbed. The results demonstrate the efficacy of our resource-adaptive approach for practical PBNM systems
Resumo:
his paper uses fuzzy-set ideal type analysis to assess the conformity of European leave regulations to four theoretical ideal typical divisions of labour: male breadwinner, caregiver parity, universal breadwinner and universal caregiver. In contrast to the majority of previous studies, the focus of this analysis is on the extent to which leave regulations promote gender equality in the family and the transformation of traditional gender roles. The results of this analysis demonstrate that European countries cluster into five models that only partly coincide with countries’ geographical proximity. Second, none of the countries considered constitutes a universal caregiver model, while the male breadwinner ideal continues to provide the normative reference point for parental leave regulations in a large number of European states. Finally, we witness a growing emphasis at the national and EU levels concerning the universal breadwinner ideal, which leaves gender inequality in unpaid work unproblematized.
Resumo:
A new, wide ranging, synthetically powerful, catalytic tandem cyclisation-anion capture process is proposed which depends on the rate of cyclisation of an organopalladium specifies (RPdX) onto a proximate alkene or diene being significantly faster than anion exchange and reductive elimination in the sequence RPdX --> RPdY --> RY + Pd(0). The catalytic cyclisation - anion capture sequence is illustrated for hydride capture by a wide variety of substrates giving rise to fused- and spiro-, carbo- and hetero-cyclic systems, regio- and stereo-specifically.
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.
Resumo:
Although visual surveillance has emerged as an effective technolody for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacyrelated applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest, and then applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain, and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.