987 resultados para Continuous optimization
Resumo:
The design of a sustainable electricity generation and transmission system is based on the established science of anthropogenic climate change and the realization that depending on imported fossil-fuels is becoming a measure of energy insecurity of supply. A model is proposed which integrates generation fuel mix composition, assignment of plants and optimized power flow, using Portugal as a case study. The result of this co-optimized approach is an overall set of generator types/fuels which increases the diversity of Portuguese electricity supply, lowers its dependency on imported fuels by 14.62% and moves the country towards meeting its regional and international obligations of 31% energy from renewables by 2020 and a 27% reduction in greenhouse gas emissions by 2012, respectively. The quantity and composition of power generation at each bus is specified, with particular focus on quantifying the amount of distributed generation. Based on other works, the resultant, overall distributed capacity penetration of 19.02% of total installed generation is expected to yield positive network benefits. Thus, the model demonstrates that national energy policy and technical deployment can be linked through sustainability and, moreover, that the respective goals may be mutually achieved via holistic, integrated design. ©2009 IEEE.
Resumo:
A microstructure based acoustic model is introduced, which can be used to optimize the microstructure of cellular materials and thus to obtain their optimal acoustic property. This acoustic model is an unsteady one which is appropriate in the limit of low Reynolds numbers. The model involves three elements. This first involves the propagation of acoustic waves passing the cylinders whose axes are aligned parallel to the direction of propagation. The second model relates to the propagation of acoustic waves passing the cylinders whose axes are aligned perpendicular to the direction of propagation. In both cases the interaction between adjacent cylinders is taken into account by considering the effect of polygonal periodic boundary conditions. As these two models are linear they are combined to give the characteristics of propagation at arbitrary incidence. The third model involves propagation passing spheres in order to represent the joints. Heat transfer is also included. These three models are then used to expand the design space and calculate the optimum cell structure for desired acoustic performance in a number of different applications. Moreover, the application fields are also analyzed.
Resumo:
Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of "motor costs." Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty.