975 resultados para Continuous Flow Analysis (CFA)
Resumo:
The aim of the Research of this Ph D Project is to improve the medical management after surgery for advanced heart failure, both after left ventricular assist devices (LVAD) implantation, and after heart transplantation in the long-term. Regarding heart transplantation (HTx), the Research Project is focused on diagnostics, classification, prevention and treatment of cardiac allograft vasculopathy (CAV), and on treatment of post-HTx cancers; the results are presented in the first part of this Thesis. In particular, the main aspect investigated are the prognostic role of information derived from coronary angiography, coronary tomography and intravascular ultrasound, and the different sensitivity of these techniques in predicting outcomes and in diagnosing CAV. Moreover, the role of mTOR inhibitors on CAV prevention or treatment is investigated, both alone and in combination with different anti-CMV prevention strategies, as well as the impact of mTOR inhibitors on clinical outcomes in the long term. Regarding LVAD, the main focus is on the role of transthoracic echocardiography in the management of patients with a continuous-flow, centrifugal, intrapericardial pump (HVAD, Heartware); this section is reported in the second part of this Thesis. The main aspects investigated are the use of echocardiography in patients with HVAD device and its interaction with the information derived from pump curves' analysis in predicting aortic valve opening status, a surrogate of the condition of support provided by the LVAD.
Resumo:
Right axillary artery (RAA) cannulation is increasingly used in cardiac surgery. Little is known about resulting flow patterns in the aorta. Therefore, flow was visualized and analyzed. A mock circulatory circuit was assembled based on a compliant transparent anatomical silicon aortic model. A RAA cannula was connected to a continuous flow rotary blood pump (RBP), pulsatile heart action was provided by a pneumatic ventricular assist device (PVAD). Peripheral vascular resistance, regional flow and vascular compliance were adjusted to obtain physiological flow and pressure waveforms. Colorants were injected automatically for flow visualization. Five flow distributions with a total flow of 4 l/min were tested (%PVAD:%RBP): 100:0, 75:25, 50:50, 25:75, 0:100. Colorant distribution was assessed using quantitative 2D image processing. Continuous flow from the RAA divided in a retrograde and an antegrade portion. Retro- to antegrade flow ratio increased with increasing RAA-flow. At full RBP support flow was stagnant in the ascending aorta. There were distinct flow patterns between the right- and left-sided supra-aortic branches. At full RBP support retrograde flow was demonstrated in the right carotid and right vertebral arteries. Further studies are needed to confirm and evaluate the described flow patterns.
Resumo:
Free radicals are present in cigarette smoke and can have a negative effect on human health by attacking lipids, nucleic acids, proteins and other biologically important species. However, because of the complexity of the tobacco smoke system and the dynamic nature of radicals, little is known about the identity of the radicals, and debate continues on the mechanisms by which those radicals are produced. In this study, acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5- tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography- mass spectrometry (LC-MS). Simulations of acetyl radical generation were performed using Matlab and the Master Chemical Mechanism (MCM) programs. A range of 10- 150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a GF/F particle filter was placed before the trapping zone. Computational simulations show that NO/NO2 reacts with isoprene, initiating chain reactions to produce a hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. With initial concentrations of NO, acetaldehyde, and isoprene in a real-world cigarette smoke scenario, these mechanisms can account for the full amount of acetyl radical detected experimentally. This study contributes to the overall understanding of the free radical generation in gas phase cigarette smoke.
Resumo:
One of the earliest accounts of duration perception by Karl von Vierordt implied a common process underlying the timing of intervals in the sub-second and the second range. To date, there are two major explanatory approaches for the timing of brief intervals: the Common Timing Hypothesis and the Distinct Timing Hypothesis. While the common timing hypothesis also proceeds from a unitary timing process, the distinct timing hypothesis suggests two dissociable, independent mechanisms for the timing of intervals in the sub-second and the second range, respectively. In the present paper, we introduce confirmatory factor analysis (CFA) to elucidate the internal structure of interval timing in the sub-second and the second range. Our results indicate that the assumption of two mechanisms underlying the processing of intervals in the second and the sub-second range might be more appropriate than the assumption of a unitary timing mechanism. In contrast to the basic assumption of the distinct timing hypothesis, however, these two timing mechanisms are closely associated with each other and share 77% of common variance. This finding suggests either a strong functional relationship between the two timing mechanisms or a hierarchically organized internal structure. Findings are discussed in the light of existing psychophysical and neurophysiological data.
Resumo:
The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Resumo:
This study aimed to develop and validate The Cancer Family Impact Scale (CFIS), an instrument for use in studies investigating relationships among family factors and colorectal cancer (CRC) screening when family history is a risk factor. We used existing data to develop the measure from 1,285 participants (637 families) across the United States who were in the Johns Hopkins Colon Cancer Genetic Testing study. Participants were 94% white with an average age of 50.1 years, and 60% were women. None had a personal CRC history, and eighty percent had 1 FDR with CRC and 20% had more than one FDR with CRC. The study had three aims: (1) to identify the latent factors underlying the CFIS via exploratory factor analysis (EFA); (2) to confirm the findings of the EFA via confirmatory factor analysis (CFA); and (3) to assess the reliability of the scale via Cronbach's alpha. Exploratory analyses were performed on a split half of the sample, and the final model was confirmed on the other half. The EFA suggested the CFIS was an 18-item measure with 5 latent constructs: (1) NEGATIVE: negative effects of cancer on the family; (2) POSITIVE: positive effects of cancer on the family; (3) COMMUNICATE: how families communicate about cancer; (4) FLOW: how information about cancer is conveyed in families; and (5) NORM: how individuals react to family norms about cancer. CFA on the holdout sample showed the CFIS to have a reasonably good fit (Chi-square = 389.977, df = 122, RMSEA= 0.058 (.052-.065), CFI=.902, TLI=.877, GF1=.939). The overall reliability of the scale was α=0.65. The reliability of the subscales was: (1) NEGATIVE α = 0.682; (2) POSITIVE α = 0.686; (3) COMMUNICATE α = 0.723; (4) FLOW α = 0.467; and (5) NORM α = 0.732. ^ We concluded the CFIS to be a good measure with most fit levels over 0.90. The CFIS could be used to compare theoretically driven hypotheses about the pathways through which family factors could influence health behavior among unaffected individuals at risk due to family history, and also aid in the development and evaluation of cancer prevention interventions including a family component. ^
Resumo:
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
Resumo:
Pingualuk Lake fills a deep crater in the Parc National des Pingualuit on the Ungava Peninsula (Nunavik, Canada) and is isolated from nearby surface waters. The main objectives of this study were to determine and compare the concentrations of two atmospherically derived contaminants, mercury and perfluorinated chemicals (PFCs), in the lake water column and fish of Pingualuk Lake and to assess the physical and biological factors influencing contaminant concentrations. Mercury concentrations in arctic char muscle tissue were comparable to those of char in other Arctic lakes, while the total amount of PFCs was below reported levels for remote lakes in the Arctic and elsewhere. Stable isotope and stomach content analyses were made to investigate the feeding ecology of the Pingualuk Lake arctic char population and indicated the possibility of multiple feeding groups. Genetics characteristics (MH and mtDNA) of fish from Pingualuk Lake revealed that this population is likely distinct from that of nearby Laflamme Lake. However, both arctic char populations exhibit differential variation of their allele families. Physical characteristics determined for Lake Pingualuk revealed that the water column was inversely stratified beneath the ice and extremely transparent to visible and ultraviolet radiation. The highest mercury concentrations (3- 6 pg/mL THg) occurred just beneath the ice surface in each lake. Pingualuk Lake, given its near pristine state and exceptional limnological features, may serve as a most valuable reference ecosystem for monitoring environmental stressors, such as contaminants, in the Arctic.
Resumo:
A reliable assessment of relevant substance flows is very important for environmental risk assessments and efficiency analysis of measures to reduce or avoid emissions of micropollutants like drugs to water systems. Accordingly, a detailed preparation of monitoring campaigns should include an accuracy check for the sampling configuration to prove the reliability of the monitoring results and the subsequent data processing. The accuracy of substance flow analyses is expected to be particularly weak for substances having high short-term variations of concentrations in sewage. This is especially the case linked to the observation of substance flows close to source in waste water systems. The verification of a monitoring configuration in a hospital sewer in Luxembourg is in the centre of interest of the case study presented here. A tracer test in the sewer system under observation is an essential element of the suggested accuracy check and provides valuable information for an uncertainty analysis. The results illustrate the importance of accuracy checks as an essential element of the preparation of monitoring campaigns. Moreover the study shows that continuous flow proportional sampling enables a representative observation of short-term peak loads of the iodinated x-ray contrast media iobitridol close to source.
Resumo:
This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2004 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2004 at the 15.01.2004; 30.01.2004; 12.02.2004; 27.02.2004; 09.03.2004; 25.03.2004; 21.04.2004; 07.05.2004; and 24.05.2004, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (for samples collected until spring 2004: CFA SAN++, Skalar [Breda, The Netherlands]; for samples collected later: CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar) and 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.