889 resultados para Congenital anomalies
Resumo:
ENGLISH: The survey aims at demonstrating the close relationship between anomalies of sea temperature observed along the tropical Pacific coast of the Americas and those observed in the oceanwide tropical belt. The survey also covers the variations, from 1952 to the present, of the trade-wind circulations which prove to be responsible for the major part of the anomalies in sea surface temperature. Finally, the thermal feedback effects of the oceanic anomalies upon the large-scale circulation of the atmosphere are treated in a preliminary fashion. SPANISH: El estudio trata de demostrar la estrecha relación que existe entre las anomalías observadas de la temperatura del mar a lo largo de la costa tropical de las Américas y las observadas en la faja tropical de todo el océano. El estudio incluye también las variaciones, desde 1952 hasta el presente, de la circulación de los vientos alisios que demuestra ser responsable por la mayor parte de las anomalías de temperatura de la superficie del mar. Finalmente los efectos termales de las anomalías oceánicas sobre la circulación en gran escala de la atmósfera son tratados en forma preliminar. (PDF contains 62 pages.)
Resumo:
ENGLISH: Beginning in February 1972 the usual seasonal cooling of the surface water of the eastern Pacific Ocean in the region of the Peru Current and along the equator failed to develop. By July tropical coastal and equatorial island stations and ships crossing the equator were recording sea-surface temperatures which were 6° to 8°F (3.3°-4.4°C) above the long-term mean. The anomalies spread over most of the eastern tropical Pacific and westward into the central equatorial Pacific through September. During October surface temperatures at coastal stations along South America were returning to normal, but in November and December 1972 temperatures rose rapidly again, with a near-record temperature anomaly of 8.1°F (4.2°C) above the long-term mean recorded at Puerto Chieama, Peru (7°42'S-79°27'W). After January 1973 sea-surface temperatures began returning to normal over most of the eastern tropical Pacific, and by March 1973 the El Nino had completed its cycle. Monthly sea-surface temperature anomalies over the eastern tropical Pacific are discussed to show the extent and magnitude of warming. Annual temperature profiles at several South American coastal and equatorial island stations are compared with temperature profiles for the 1957-1958 and 1965 EI Nino years. Characteristics of the temperature anomaly profiles at Puerto Chicama during several very warm years for the 1925-1972 period are also compared. Finally, meteorological factors contributing to a relaxation of the southeast trade winds and to the decreased unwilling along the coast of South America in 1972-1973 are examined. SPANISH: A comienzos de febrero de 1972, no se registró el enfriamiento común estacional del agua superficial del Océano Pacífico oriental en la región de la Corriente del Perú y a lo largo del ecuador. En julio las estaciones tropicales, costeras y de las islas ecuatoriales, y los barcos que cruzaban la linea ecuatorial registraron temperaturas superficiales del mar de 6° a 8°F (3.3°-4.4°C) más altas que la media a largo plazo. Las anomalías se esparcieron sobre la mayoría del Pacífico oriental tropical, y al oeste en el Pacífico central ecuatorial. En octubre, las temperaturas superficiales de las estaciones costaneras a lo largo de Sudamérica volvieron a la normalidad, pero en noviembre y diciembre de 1972, las temperaturas de nuevo ascendieron rápidamente con una anomalía de temperatura que alcanzó 8.1°F (4.2°C) sobre la media a largo plazo registrada en Puerto Chicama, Perú (7°42'S-79°27'W). Después de enero 1973 las temperaturas de la superficie del mar volvieron rápidamente a la normalidad en la mayoría del Pacífico oriental tropical y en marzo de 1973 el Niño había completado su ciclo. Se discuten las anomalías mensuales de las temperaturas de la superficie del mar en el Pacífico oriental tropical para indicar la extensión y magnitud del calentamiento. Los perfiles anuales de temperatura en varias estaciones costeras y de las islas ecuatoriales sudamericanas se comparan con los perfiles de temperatura de los años en que ocurrió el Niño en 1957-1958 y 1965. Se comparan también las características de los perfiles de las anomalías de temperatura en Puerto Chicama durante varios años muy cálidos para el período de 1925-1972. Finalmente, se examinan los factores meteorológicos que contribuyen al debilitamiento de los vientos alisios del sudeste y a la reducción del afloramiento a lo largo de la costa sudamericana en 1972-1973. (PDF contains 48 pages.)
Resumo:
Based on air temperature data from three sites of West and East Greenland, on ice charts for the area 54°N, 71°N and 20°W, 70°W, and on CTD profile observations around Greenland, the annual variability of climate is shown. Mean monthly air temperature data from Nuuk/West Greenland reveal the long-term interannual changes of air temperature anomalies. The warming trend which was observed during November, December 1995 was maintained into 1996 for about five months. Thus, spring warming of the near surface water layers, especially on the shallow bank areas off West Greenland has been favoured. As a result of mild air temperatures over most of 1996, sea ice conditions were about normal around Greenland and off eastern Canada. Subsurface observations indicate considerable warming of the 0-200 m water layer off West Greenland. The thermal anomaly of this layer amounts to +1.59K, which is the second highest value on record since the warm 1964 event. The warmer than normal conditions as recorded since November 1995 off East and West Greenland, point at intermediate warming which is characteristic of the second half of the recent decades. The long-term trend of air temperature anomalies off West Greenland points, however, still at cooling, a trend which is persistent since the early 1970s. As the potential driving mechanism for the intermediate warming in the Labrador Sea area, the sea level air pressure gradient between Iceland and the Azores is identified. The 1996 value of this gradient, the North Atlantic Oscillation (NAO) Index, is strongly negative and this represents the flow of mild air masses from the midlatitude Atlantic Ocean to the Greenland/Labrador Sea region. Accordingly, air temperature anomalies indicated unusual warming during the month of February which amounted to >2K in the region of Baffin Land, Labrador and Greenland.
Resumo:
Abstract to Part I
The inverse problem of seismic wave attenuation is solved by an iterative back-projection method. The seismic wave quality factor, Q, can be estimated approximately by inverting the S-to-P amplitude ratios. Effects of various uncertain ties in the method are tested and the attenuation tomography is shown to be useful in solving for the spatial variations in attenuation structure and in estimating the effective seismic quality factor of attenuating anomalies.
Back-projection attenuation tomography is applied to two cases in southern California: Imperial Valley and the Coso-Indian Wells region. In the Coso-Indian Wells region, a highly attenuating body (S-wave quality factor (Q_β ≈ 30) coincides with a slow P-wave anomaly mapped by Walck and Clayton (1987). This coincidence suggests the presence of a magmatic or hydrothermal body 3 to 5 km deep in the Indian Wells region. In the Imperial Valley, slow P-wave travel-time anomalies and highly attenuating S-wave anomalies were found in the Brawley seismic zone at a depth of 8 to 12 km. The effective S-wave quality factor is very low (Q_β ≈ 20) and the P-wave velocity is 10% slower than the surrounding areas. These results suggest either magmatic or hydrothermal intrusions, or fractures at depth, possibly related to active shear in the Brawley seismic zone.
No-block inversion is a generalized tomographic method utilizing the continuous form of an inverse problem. The inverse problem of attenuation can be posed in a continuous form , and the no-block inversion technique is applied to the same data set used in the back-projection tomography. A relatively small data set with little redundancy enables us to apply both techniques to a similar degree of resolution. The results obtained by the two methods are very similar. By applying the two methods to the same data set, formal errors and resolution can be directly computed for the final model, and the objectivity of the final result can be enhanced.
Both methods of attenuation tomography are applied to a data set of local earthquakes in Kilauea, Hawaii, to solve for the attenuation structure under Kilauea and the East Rift Zone. The shallow Kilauea magma chamber, East Rift Zone and the Mauna Loa magma chamber are delineated as attenuating anomalies. Detailed inversion reveals shallow secondary magma reservoirs at Mauna Ulu and Puu Oo, the present sites of volcanic eruptions. The Hilina Fault zone is highly attenuating, dominating the attenuating anomalies at shallow depths. The magma conduit system along the summit and the East Rift Zone of Kilauea shows up as a continuous supply channel extending down to a depth of approximately 6 km. The Southwest Rift Zone, on the other hand, is not delineated by attenuating anomalies, except at a depth of 8-12 km, where an attenuating anomaly is imaged west of Puu Kou. The Ylauna Loa chamber is seated at a deeper level (about 6-10 km) than the Kilauea magma chamber. Resolution in the Mauna Loa area is not as good as in the Kilauea area, and there is a trade-off between the depth extent of the magma chamber imaged under Mauna Loa and the error that is due to poor ray coverage. Kilauea magma chamber, on the other hand, is well resolved, according to a resolution test done at the location of the magma chamber.
Abstract to Part II
Long period seismograms recorded at Pasadena of earthquakes occurring along a profile to Imperial Valley are studied in terms of source phenomena (e.g., source mechanisms and depths) versus path effects. Some of the events have known source parameters, determined by teleseismic or near-field studies, and are used as master events in a forward modeling exercise to derive the Green's functions (SH displacements at Pasadena that are due to a pure strike-slip or dip-slip mechanism) that describe the propagation effects along the profile. Both timing and waveforms of records are matched by synthetics calculated from 2-dimensional velocity models. The best 2-dimensional section begins at Imperial Valley with a thin crust containing the basin structure and thickens towards Pasadena. The detailed nature of the transition zone at the base of the crust controls the early arriving shorter periods (strong motions), while the edge of the basin controls the scattered longer period surface waves. From the waveform characteristics alone, shallow events in the basin are easily distinguished from deep events, and the amount of strike-slip versus dip-slip motion is also easily determined. Those events rupturing the sediments, such as the 1979 Imperial Valley earthquake, can be recognized easily by a late-arriving scattered Love wave that has been delayed by the very slow path across the shallow valley structure.
Resumo:
Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.
Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.
A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.
P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.
Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.
Resumo:
This thesis describes the design and implementation of a situation awareness application. The application gathers data from sensors including accelerometers for monitoring earthquakes, carbon monoxide sensors for monitoring fires, radiation detectors, and dust sensors. The application also gathers Internet data sources including data about traffic congestion on daily commute routes, information about hazards, news relevant to the user of the application, and weather. The application sends the data to a Cloud computing service which aggregates data streams from multiple sites and detects anomalies. Information from the Cloud service is then displayed by the application on a tablet, computer monitor, or television screen. The situation awareness application enables almost all members of a community to remain aware of critical changes in their environments.
Resumo:
A research program was designed (1) to map regional lithological units of the lunar surface based on measurements of spatial variations in spectral reflectance, and, (2) to establish the sequence of the formation of such lithological units from measurements of the accumulated affects of impacting bodies.
Spectral reflectance data were obtained by scanning luminance variations over the lunar surface at three wavelengths (0.4µ, 0.52µ, and 0.7µ). These luminance measurements were reduced to normalized spectral reflectance values relative to a standard area in More Serenitotis. The spectral type of each lunar area was identified from the shape of its reflectance spectrum. From these data lithological units or regions of constant color were identified. The maria fall into two major spectral classes: circular moria like More Serenitotis contain S-type or red material and thin, irregular, expansive maria like Mare Tranquillitatis contain T-type or blue material. Four distinct subtypes of S-type reflectances and two of T-type reflectances exist. As these six subtypes occur in a number of lunar regions, it is concluded that they represent specific types of material rather than some homologous set of a few end members.
The relative ages or sequence of formation of these more units were established from measurements of the accumulated impacts which have occurred since more formation. A model was developed which relates the integrated flux of particles which hove impacted a surface to the distribution of craters as functions of size and shape. Erosion of craters is caused chiefly by small bodies which produce negligible individual changes in crater shape. Hence the shape of a crater can be used to estimate the total number of small impacts that have occurred since the crater was formed. Relative ages of a surface can then be obtained from measurements of the slopes of the walls of the oldest craters formed on the surface. The results show that different maria and regions within them were emplaced at different times. An approximate absolute time scale was derived from Apollo 11 crystallization ages under an assumption of a constant rote of impacting for the last 4 x 10^9 yrs. Assuming, constant flux, the period of mare formation lasted from over 4 x 10^9 yrs to about 1.5 x 10^9 yrs ago.
A synthesis of the results of relative age measurements and of spectral reflectance mapping shows that (1) the formation of the lunar maria occurred in three stages; material of only one spectral type was deposited in each stage, (2) two distinct kinds of maria exist, each type distinguished by morphology, structure, gravity anomalies, time of formation, and spectral reflectance type, and (3) individual maria have complicated histories; they contain a variety of lithic units emplaced at different times.
Resumo:
This thesis presents two different forms of the Born approximations for acoustic and elastic wavefields and discusses their application to the inversion of seismic data. The Born approximation is valid for small amplitude heterogeneities superimposed over a slowly varying background. The first method is related to frequency-wavenumber migration methods. It is shown to properly recover two independent acoustic parameters within the bandpass of the source time function of the experiment for contrasts of about 5 percent from data generated using an exact theory for flat interfaces. The independent determination of two parameters is shown to depend on the angle coverage of the medium. For surface data, the impedance profile is well recovered.
The second method explored is mathematically similar to iterative tomographic methods recently introduced in the geophysical literature. Its basis is an integral relation between the scattered wavefield and the medium parameters obtained after applying a far-field approximation to the first-order Born approximation. The Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest descent method. It consists essentially of successive backprojections of the recorded wavefield, with angular and propagation weighing coefficients for density and bulk modulus. After each backprojection, the forward problem is computed and the residual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration and is therefore readily applicable to seismic data. Several examples of reconstruction for simple point scatterer models are performed. Recovery of the amplitudes of the anomalies are improved with successive iterations. Iterations also improve the sharpness of the images.
The elastic Born approximation, with the addition of a far-field approximation is shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs of incident-scattered rays. Incident rays propagate in the background medium, interacting only once with the scatterers. Scattered rays propagate as if in the background medium, with no interaction with the scatterers. An example of P-wave impedance inversion is performed on a VSP data set consisting of three offsets recorded in two wells.
Resumo:
The nature of the subducted lithospheric slab is investigated seismologically by tomographic inversions of ISC residual travel times. The slab, in which nearly all deep earthquakes occur, is fast in the seismic images because it is much cooler than the ambient mantle. High resolution three-dimensional P and S wave models in the NW Pacific are obtained using regional data, while inversion for the SW Pacific slabs includes teleseismic arrivals. Resolution and noise estimations show the models are generally well-resolved.
The slab anomalies in these models, as inferred from the seismicity, are generally coherent in the upper mantle and become contorted and decrease in amplitude with depth. Fast slabs are surrounded by slow regions shallower than 350 km depth. Slab fingering, including segmentation and spreading, is indicated near the bottom of the upper mantle. The fast anomalies associated with the Japan, Izu-Bonin, Mariana and Kermadec subduction zones tend to flatten to sub-horizontal at depth, while downward spreading may occur under parts of the Mariana and Kuril arcs. The Tonga slab appears to end around 550 km depth, but is underlain by a fast band at 750-1000 km depths.
The NW Pacific model combined with the Clayton-Comer mantle model predicts many observed residual sphere patterns. The predictions indicate that the near-source anomalies affect the residual spheres less than the teleseismic contributions. The teleseismic contributions may be removed either by using a mantle model, or using teleseismic station averages of residuals from only regional events. The slab-like fast bands in the corrected residual spheres are are consistent with seismicity trends under the Mariana Tzu-Bonin and Japan trenches, but are inconsistent for the Kuril events.
The comparison of the tomographic models with earthquake focal mechanisms shows that deep compression axes and fast velocity slab anomalies are in consistent alignment, even when the slab is contorted or flattened. Abnormal stress patterns are seen at major junctions of the arcs. The depth boundary between tension and compression in the central parts of these arcs appears to depend on the dip and topology of the slab.
Resumo:
In order to investigate the abundanceand strength of most recent year classes of cod,haddock, whiting, Norway pout, herring, sprat, and mackerel seven researchvessels of ICES member states carried out a bottom trawl survey in the North Sea in January/February 1996. Germany took part in these investigations by R.V. "Walther Herwig III" from January 19 to February 9 covering 62 out of 332 international stations. No substantial positive or negative results concerning the incoming year classes were obtained. As expected, the hydrographc situation of the area under investigation was strongly influenced by the actual weather: On the one hand, the continuous cooling of the surface layer by cold air caused vertical mixing down into the bottom layer in larger areas, and led to decreasing water temperatures which were below the long term values in nearly all the North Sea at the end of the investigation period. On the other hand, the continuous southern to eastern winds over the North Sea led to horizontal water mass transports renewing vertical salinity differences and inducing regionally positive as weH as negative salinity anomalies of up to 0.6· 10-3. ,
Resumo:
Since 1991, the aggregate biomass of fish stocks inhabiting the West Greenland shelf stagnates at the lowest level. The latest survey results of cruise no. 152 conducted by FRV 'Walther Herwig III' do not indicate any improvements in state of the stocks, although no fishing effort was recently directed towards groundfish. The cod stock showed again a record low and is presently dominated by recruits of the year classes 1991 and 1993. Both year classes are considered to be weak and the cod stock is beyond the 'minimum biologically acceptable level'. Consequently, an increase in stock abundance is not expected either in short or long term. Other ecologically or economically important fish species, American plaice, redfish, wolffish and starry skate, were also found to have minimum stock abundances. By-catch estimates of juvenile groundfish taken by the shrimp fishery, operating at traditional grounds of cod and redfish fisheries, are indispensible. Analysis of climatological data from Nuuk/West Greenland indicates that climate during the past fourty years was characterized by two decades of anomalous warm conditions, and cooling which dominates the dimate since 1969. Anomalous cold events were encountered during 1983, 1984 and during 1992, 1993. Similar to the air temperature anomalies, autumn temperatures of the ocean surface layer indicate cold and warm periods during the past thirty years. In contrast to the colder than normal atmospheric conditions during the early nineties, however, the ocean conditions indicate intermediate warming.
Resumo:
The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.
We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.
Resumo:
The recently observed anomaly in photoelectron angular distributions (PADs), the disappearance of the main lobes of PADs which should be usually in the direction of laser polarization, is reinterpreted as a minimum of generalized Bessel functions in the laser-polarization direction with the theory of nonperturbative quantum electrodynamics. The reinterpretation has no artificial fitting parameters and explains more features of the experimentally observed PADs, in contrast to the existing interpretation in which the anomaly is interpreted as a quantum interference of angular momentum partial waves. Some hierarchy anomalies are predicted for further experimental observations.
Resumo:
The electrical and magnetic properties of amorphous alloys obtained by rapid quenching from the liquid state have been studied. The composition of these alloys corresponds to the general formula MxPd80-xSi20, in which M stands for a metal of the first transition series between chromium and nickel and x is its atomic concentration. The concentration ranges within which an amorphous structure could be obtained were: from 0 to 7 for Cr, Mn and Fe, from 0 to 11 for Co and from 0 to 15 for Ni. A well-defined minimum in the resistivity vs temperature curve was observed for all alloys except those containing nickel. The alloys for which a resistivity minimum was observed had a negative magnetoresistivity approximately proportional to the square of the magnetization and their susceptibility obeyed the Curie-Weiss law in a wide temperature range. For concentrated Fe and Co alloys the resistivity minimum was found to coexist with ferromagnetism. These observations lead to the conclusion that the present results are due to a s-d exchange interaction. The unusually high resistivity minimum temperature observed in the Cr alloys is interpreted as a result of a high Kondo temperature and a large s-d exchange integral. A low Fermi energy of the amorphous alloys (3.5 eV) is also responsible for the anomalies due to the s-d exchange interaction.
Resumo:
The electrical transport properties and lattice spacings of simple cubic Te-Au, Te-Au-Fe, and Te-Au-Mn alloys, prepared by rapid quenching from the liquid state, hove been measured and correlated with a proposed bond structure. The variations of superconducting transition temperature, absolute thermoelectric power, and lattice spacing with Te concentration all showed related anomalies in the binary Te-Au alloys. The unusual behavior of these properties has been interpreted by using nearly free electron theory to predict the effect of the second Brillouin zone boundary on the area of the Fermi surface, and the electronic density of states. The behavior of the superconducting transition temperature and the lattice parameter as Fe and Mn ore added further supports the proposed interpretation as well as providing information on the existence of localized magnetic states in the ternary alloys. In addition, it was found that a very distinct bond structure effect on the transition temperatures of the Te-Au-Fe alloys could be identified.