876 resultados para Computer software - Development
Resumo:
There are many processes, particularly in the nuclear and metals processing industries, where electromagnetic fields are used to influence the flow behaviour of a fluid. Procedures exploiting finite volume (FV) methods in both structured and unstructured meshes have recently been developed which enable this influence to be modelled in the context of conventional FV CFD codes. A range of problems have been tackled by the authors, including electromagnetic pumps and brakes, weirs and dams in steelmaking tundishes and interface effects in aluminium smelting cells. Two cases are presented here, which exemplify the application of the new procedures. The first case investigates the influence of electromagnetic fields on solidification front progression in a tin casting and the second case shows how the liquid metals free surface may be controlled through an externally imposed magnetic field in the semi-levitation casting process.
Resumo:
This paper describes a project aimed at making Computational Fluid Dynamics (CFD)- based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practice of CFD-based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modeling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasizing its open architecture, CFD engine and knowledge-based systems.
Resumo:
We present here a decoupling technique to tackle the entanglement of the nonlinear boundary condition and the movement of the char/virgin front for a thermal pyrolysis model for charring materials. Standard numerical techniques to solve moving front problems — often referred to as Stefan problems — encounter difficulties when dealing with nonlinear boundaries. While special integral methods have been developed to solve this problem, they suffer from several limitations which the technique described here overcomes. The newly developed technique is compared with the exact analytical solutions for some simple ideal situations which demonstrate that the numerical method is capable of producing accurate numerical solutions. The pyrolysis model is also used to simulate the mass loss process from a white pine sample exposed to a constant radiative flux in a nitrogen atmosphere. Comparison with experimental results demonstrates that the predictions of mass loss rates and temperature profile within the solid material are in good agreement with the experiment.
Resumo:
This paper describes the extension of the building EXODUS evacuation model in order to: allow occupants to be assigned a limited set of tasks, display co-operation
Resumo:
Use of structuring mechanisms (such as modularisation) is widely believed to be one of the key ways to improve software quality. Structuring is considered to be at least as important for specification documents as for source code, since it is assumed to improve comprehensibility. Yet, as with most widely held assumptions in software engineering, there is little empirical evidence to support this hypothesis. Also, even if structuring can be shown to he a good thing, we do not know how much structuring is somehow optimal. One of the more popular formal specification languages, Z, encourages structuring through its schema calculus. A controlled experiment is described in which two hypotheses about the effects of structure on the comprehensibility of Z specifications are tested. Evidence was found that structuring a specification into schemas of about 20 lines long significantly improved comprehensibility over a monolithic specification. However, there seems to be no perceived advantage in breaking down the schemas into much smaller components. The experiment can he fully replicated.
Resumo:
SMARTFIRE is a fire field model based on an open architecture integrated CFD code and knowledge-based system. It makes use of the expert system to assist the user in setting up the problem specification and new computational techniques such as Group Solvers to reduce the computational effort involved in solving the equations. This paper concentrates on recent research into the use of artificial intelligence techniques to assist in dynamic solution control of fire scenarios being simulated using fire field modelling techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxations using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate enhanced solution reliability due to obtaining acceptable convergence within each time step unlike some of the comparison simulations.
Resumo:
Given the importance of occupant behaviour on evacuation efficiency, a new behavioural feature has been implemented into buildingEXODUS. This feature concerns the response of occupants to exit selection and re-direction. This behaviour is not simply pre-determined by the user as part of the initialisation process, but involves the occupant taking decisions based on their previous experiences and the information available to them. This information concerns the occupants prior knowledge of the enclosure and line-of-sight information concerning queues at neighbouring exits. This new feature is demonstrated and reviewed through several examples.
Resumo:
The purpose of this paper is to describe and demonstrate some of the advanced behavioral features currently being developed for the building-EXODUS evacuation model. These advanced features involve the ability to specify roles for particular individuals during the evacuation. With these enhancements to the Behavioral Sub model of building-EXODUS, it is possible to include a number of procedural and behavioral aspects previously ignored in evacuation simulations. These include the behavioral aspect of group bonding, the procedural aspects involved with the role of the fire warden and rescue operations undertaken by the fire services. The importance of these enhancements are discussed and demonstrated through three simple simulations.
Resumo:
Multilevel algorithms are a successful class of optimization techniques that address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimization method that refines the partition at each graph level. To date, these algorithms have been used almost exclusively to minimize the cut-edge weight in the graph with the aim of minimizing the parallel communication overhead. However, it has been shown that for certain classes of problems, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. Therefore, in this paper, the authors modify the multilevel algorithms to optimize a cost function based on the aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Guest editorial
Resumo:
This paper describes an industrial application of case-based reasoning in engineering. The application involves an integration of case-based reasoning (CBR) retrieval techniques with a relational database. The database is specially designed as a repository of experiential knowledge and with the CBR application in mind such as to include qualitative search indices. The application is for an intelligent assistant for design and material engineers in the submarine cable industry. The system consists of three components; a material classifier and a database of experiential knowledge and a CBR system is used to retrieve similar past cases based on component descriptions. Work has shown that an uncommon retrieval technique, hierarchical searching, well represents several search indices and that this techniques aids the implementation of advanced techniques such as context sensitive weights. The system is currently undergoing user testing at the Alcatel Submarine Cables site in Greenwich. Plans are for wider testing and deployment over several sites internationally.
Resumo:
An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.
Resumo:
For the numerical solution of the linearized Euler equations, an optimized computational scheme is considered. It is based on fully staggered (in space and time) regular meshes and on a simple mirroring procedure at the stepwise solid walls. There is no need to define ghost points into the solid ohjects that reflect the sound waves. Test results demonstrate the accuracy of the method that may be used for aeroacoustic problems with complex geometries.