956 resultados para Computer models
Resumo:
A instalação de sistemas de videovigilância, no interior ou exterior, em locais como aeroportos, centros comerciais, escritórios, edifícios estatais, bases militares ou casas privadas tem o intuito de auxiliar na tarefa de monitorização do local contra eventuais intrusos. Com estes sistemas é possível realizar a detecção e o seguimento das pessoas que se encontram no ambiente local, tornando a monitorização mais eficiente. Neste contexto, as imagens típicas (imagem natural e imagem infravermelha) são utilizadas para extrair informação dos objectos detectados e que irão ser seguidos. Contudo, as imagens convencionais são afectadas por condições ambientais adversas como o nível de luminosidade existente no local (luzes muito fortes ou escuridão total), a presença de chuva, de nevoeiro ou de fumo que dificultam a tarefa de monitorização das pessoas. Deste modo, tornou‐se necessário realizar estudos e apresentar soluções que aumentem a eficácia dos sistemas de videovigilância quando sujeitos a condições ambientais adversas, ou seja, em ambientes não controlados, sendo uma das soluções a utilização de imagens termográficas nos sistemas de videovigilância. Neste documento são apresentadas algumas das características das câmaras e imagens termográficas, assim como uma caracterização de cenários de vigilância. Em seguida, são apresentados resultados provenientes de um algoritmo que permite realizar a segmentação de pessoas utilizando imagens termográficas. O maior foco desta dissertação foi na análise dos modelos de descrição (Histograma de Cor, HOG, SIFT, SURF) para determinar o desempenho dos modelos em três casos: distinguir entre uma pessoa e um carro; distinguir entre duas pessoas distintas e determinar que é a mesma pessoa ao longo de uma sequência. De uma forma sucinta pretendeu‐se, com este estudo, contribuir para uma melhoria dos algoritmos de detecção e seguimento de objectos em sequências de vídeo de imagens termográficas. No final, através de uma análise dos resultados provenientes dos modelos de descrição, serão retiradas conclusões que servirão de indicação sobre qual o modelo que melhor permite discriminar entre objectos nas imagens termográficas.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 22 de Janeiro de 2016, Universidade dos Açores.
Resumo:
Nas últimas décadas temos assistido a um avanço tecnológico a todos os níveis mas com particular incidência ao nível do hardware e dos dispositivos móveis. Estes tornaram-‐se cada vez mais leves e mais baratos, e transferiram-‐se do escritório para o carro, para os equipamentos e para os utensílios. A quantidade de informação (digital) disponível no meio envolvente aumentou de forma exponencial exigindo uma resposta tecnológica com o intuito de melhorar/facilitar o seu acesso e assimilação. É aqui que surge o conceito de Realidade Aumentada a funcionar como uma ponte de ligação entre o real e o digital convidando a novos modelos de interacção com o utilizador. A sua incorporação visa essencialmente tornar os sistemas mais usáveis diminuindo a carga cognitiva inerente à sua utilização. Este trabalho apresenta um estudo de caso, propondo um modelo para a construção de um Objecto de Aprendizagem com recurso a Realidade Aumentada especificamente para a área da saúde. O problema identificado nesta dissertação procura investigar se a integração de técnicas de Realidade Aumentada combinadas com técnicas multimédia e outros materiais convencionais podem contribuir para uma maior motivação e percepção cooperando para a construção de conhecimento.
Resumo:
O processo de negociação tem ganho relevância como uma das formas de gestão de conflitos. Verifica-se que nas organizações a negociação é um processo omnipresente, que tem sido alvo de muito estudo e investigação, e as capacidades de negociação são consideradas determinantes para o sucesso. Em consequência dessas tendências, surgem propostas de modelos de negociação bastantes flexíveis e que visam colaboração entre as partes interessadas, modelos que se adequam aos contextos organizacionais em que predominam relações estáveis e de longo prazo. Estas propostas procuram a solução óptima para as partes interessadas. No entanto, faltam frequentemente os mecanismos e procedimentos que garantam um processo estruturado para elaborar e analisar os diversos cenários na negociação, considerando um conjunto de aspectos relevantes para ambas as partes. No presente trabalho de dissertação formula-se uma proposta baseada no modelo de negociação Win Win Quantitativa, em que foi utilizada uma abordagem do método multicritério Analitic Hierarchy Process (AHP) para seleccionar a melhor opção de serviço para uma determinada empresa. Para o caso de estudo, num contexto real, foi necessário desenvolver uma aplicação Excel que permitisse analisar, de uma forma clara, as diversas alternativas perante os critérios mencionados. A aplicação do método AHP permite aos clientes tomar uma decisão potencialmente mais acertada. A aplicação informática procura optimizar os custos inerentes à prestação de serviços, oferecendo aos clientes um custo reduzido e assim tornando a empresa mais competitiva e atractiva para os potenciais clientes.
Resumo:
We show that in two Higgs doublet models at tree-level the potential minimum preserving electric charge and CP symmetries, when it exists, is the global one. Furthermore, we derived a very simple condition, involving only the coefficients of the quartic terms of the potential, that guarantees spontaneous CP breaking. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.
Resumo:
Os sistemas Computer-Aided Diagnosis (CAD) auxiliam a deteção e diferenciação de lesões benignas e malignas, aumentando a performance no diagnóstico do cancro da mama. As lesões da mama estão fortemente correlacionadas com a forma do contorno: lesões benignas apresentam contornos regulares, enquanto as lesões malignas tendem a apresentar contornos irregulares. Desta forma, a utilização de medidas quantitativas, como a dimensão fractal (DF), pode ajudar na caracterização dos contornos regulares ou irregulares de uma lesão. O principal objetivo deste estudo é verificar se a utilização concomitante de 2 (ou mais) medidas de DF – uma tradicionalmente utilizada, a qual foi designada por “DF de contorno”; outra proposta por nós, designada por “DF de área” – e ainda 3 medidas obtidas a partir destas, por operações de dilatação/erosão e por normalização de uma das medidas anteriores, melhoram a capacidade de caracterização de acordo com a escala BIRADS (Breast Imaging Reporting and Data System) e o tipo de lesão. As medidas de DF (DF contorno e DF área) foram calculadas através da aplicação do método box-counting, diretamente em imagens de lesões segmentadas e após a aplicação de um algoritmo de dilatação/erosão. A última medida baseia-se na diferença normalizada entre as duas medidas DF de área antes e após a aplicação do algoritmo de dilatação/erosão. Os resultados demonstram que a medida DF de contorno é uma ferramenta útil na diferenciação de lesões, de acordo com a escala BIRADS e o tipo de lesão; no entanto, em algumas situações, ocorrem alguns erros. O uso combinado desta medida com as quatro medidas propostas pode melhorar a classificação das lesões.
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
The mechanisms of speech production are complex and have been raising attention from researchers of both medical and computer vision fields. In the speech production mechanism, the articulator’s study is a complex issue, since they have a high level of freedom along this process, namely the tongue, which instigates a problem in its control and observation. In this work it is automatically characterized the tongues shape during the articulation of the oral vowels of Portuguese European by using statistical modeling on MR-images. A point distribution model is built from a set of images collected during artificially sustained articulations of Portuguese European sounds, which can extract the main characteristics of the motion of the tongue. The model built in this work allows under standing more clearly the dynamic speech events involved during sustained articulations. The tongue shape model built can also be useful for speech rehabilitation purposes, specifically to recognize the compensatory movements of the articulators during speech production.
Resumo:
Agência Financiadora: Fundação para a Ciência e a Tecnologia (FCT) - PEst-OE/FIS/UI0777/2013; CERN/FP/123580/2011; PTDC/FIS-NUC/0548/2012
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Vienna, Austria, Nov 10-14, 2013
Resumo:
In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.
Resumo:
In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.