857 resultados para Composite-Materials
Resumo:
Thermal interface materials (TIMs) form a mechanical and thermal link between a heat source and a heat sink. Thus, they should have high thermal conductivity and high compliance to efficiently transfer heat and accommodate any differential strain between the heat source and the sink, respectively. This paper reports on the processing and the characterization of potential metallic TIM composite solders comprising of Cu, a high conductivity phase, uniformly embedded in In matrix, a highly compliant phase. We propose the fabrication of such a material by a two-step fabrication technique comprising of liquid phase sintering (LPS) followed by accumulative roll bonding (ARB). To demonstrate the efficacy of the employed two-step processing technique, an In-40 vol. % Cu composite solder was produced first using LPS with short sintering periods (30 or 60 s at 160 degrees C) followed by ARB up to five passes, each pass imposing a strain of 50%. Mechanical response and electrical and thermal conductivities of the fabricated samples were evaluated. It was observed that processing through ARB homogenizes the distribution of Cu in an In matrix, disintegrates the agglomerates of Cu powders, and also significantly increases thermal and electrical conductivities, almost attaining theoretically predicted values, without significantly increasing the flow stress. Furthermore, the processing technique also allows the insertion of desired foreign species, such as reduced graphene oxide, in In-Cu for further enhancing a target property, such as electrical conductivity.
Resumo:
Graphene oxide-CoFe2O4 nanoparticle composites were synthesized using a two step synthesis method in which graphene oxide was initially synthesized followed by precipitation of CoFe2O4 nanoparticles in a reaction mixture containing graphene oxide. Samples were extracted from the reaction mixture at different times at 80 degrees C. All the extracted samples contained CoFe2O4 nanoparticles formed over the graphene oxide. It was observed that the increase in the reflux time significantly increased the saturation magnetization value for the superparamagnetic nanoparticles in the composite. It was also noticed that the size of the nanoparticles increased with increase in the reflux time. Transverse relaxivity of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with the reflux time. Graphene oxide-CoFe2O4 nanoparticle composites also exhibit biocompatibility towards the MCF-7 cell line.