994 resultados para Comparison principle
Resumo:
ENGLISH: One of the important problems in the current investigations of the Inter-American Tropical Tuna Commission is the determination of the racial affinities of the stocks of yellowfin and skipjack inhabiting the Eastern Tropical Pacific fishing region. The nature of the problem is twofold. Primary concern is elucidation of the inter-regional relationship of stocks between the Eastern Tropical Pacific fishing region and those further to the westward. Hardly less important, however, is the intraregional relationship of stocks within the regions, particularly the Eastern Pacific region. This latter relationship must be at least partially understood in order properly to approach investigation of the former. SPANISH: Dentro de las las investigaciones que al presente efectúa la Comisión Interamericana del Atún Tropical, uno de los importantes problemas consiste en la determinación de las afinidades raciales de los stocks de atún aleta amarilla y barrilete que se encuentran en las regiones de pesca del Pacífico Oriental Tropical. La naturaleza del problema es doble. El interés primario es la elucidación de la relación inter-regional entre los stocks de la región pesquera del Pacífico Oriental Tropical y los de aquéllas más hacia el oeste de dicho océano. Apenas menos importante, sin embargo, es la relación intra-regional de los stocks dentro de las regiones, particularmente la del Pacífico del Este. Esta última relación debe ser por lo menos parcialmente conocida, a fin de abordar con propiedad la anteriormente citada. (PDF contains 63 pages.)
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.
Resumo:
In this paper, we studied the role of vertical component Of Surface tension of a water droplet on the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material, poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney-Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the numerical solutions with two different models, we found that the simple linear elastic model is accurate enough to describe such kind of problem, which would be quite convenient for engineering applications. Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected, and showed good agreement with our theoretical analyses. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Carbon nanotubes (CNTs), due to their exceptional magnetic, electrical and mechanical properties, are promising candidates for several technical applications ranging from nanoelectronic devices to composites. Young's modulus holds the special status in material properties and micro/nano-electromechanical systems (MEMS/NEMS) design. The excellently regular structures of CNTs facilitate accurate simulation of CNTs' behavior by applying a variety of theoretical methods. Here, three representative numerical methods, i.e., Car-Parrinello molecular dynamics (CPMD), density functional theory (DFT) and molecular dynamics (MD), were applied to calculate Young's modulus of single-walled carbon nanotube (SWCNT) with chirality (3,3). The comparative studies showed that the most accurate result is offered by time consuming DFT simulation. MID simulation produced a less accurate result due to neglecting electronic motions. Compared to the two preceding methods the best performance, with a balance between efficiency and precision, was deduced by CPMD.
Resumo:
To search for a high sensitivity sensor for formaldehyde (H2CO), We investigated the adsorption of H2CO on the intrinsic and Al-doped graphene sheets using density functional theory (DFT) calculations. Compared with the intrinsic graphene, the Al-doped graphene system has high binding energy value and short connecting distance, which are caused by the chemisorption of H2CO molecule. Furthermore, the density of states (DOS) results show that orbital hybridization could be seen between H2CO and Al-doped graphene sheet, while there is no evidence for hybridization between the H2CO molecule and the intrinsic graphene sheet. Therefore, Al-doped graphene is expected to be a novel chemical sensor for H2CO gas. We hope our calculations are useful for the application of graphene in chemical sensor.
Resumo:
ENGLISH: It is important to the Inter-American Tropical Tuna Commission to know whether the anchoveta (Cetengraulis mysticetus), the principal tuna bait species in the Eastern Tropical Pacific Ocean, is composed of one or several populations. Earlier research indicated that, on the basis of significant differences in certain meristic counts, populations of this species in six of the major baiting localities between Mexico and Peru, should provisionally be considered as separate stocks. Since that time, additional collections of anchovetas have been obtained from these and other intervening localities. Purpose of the present study was to confirm the results of the earlier work, and to determine whether the differences in the meristic counts persisted from year to year, as well as to examine certain morphometric characters of the fish from these areas, and to learn whether the populations from the other localities are also separate entities. SPANISH: La Comisión Interamericana del Atún Tropical está interesada en saber si la anchoveta (Ceteugrautís mvsticetus}, la principal especie usada como cebo para la pesca del atún en el Océano Pacífico Oriental Tropical, está compuesta de una o de varias poblaciones. Investigaciones previas indicaron que, a base de diferencias significativas encontradas en ciertos caracteres numéricos, las poblaciones de esta especie en seis de las principales localidades entre México y Perú, podían ser consideradas provisionalmente como pertenecientes a "stocks'' separados. Desde entonces se han venido haciendo recolecciones adicionales de anchovetas en éstas y otras localidades intermedias. El propósito del presente trabajo ha sido confirmar los resultados obtenidos previamente, y determinar si las diferencias en los caracteres numéricos han persistido de un año a otro, así como examinar ciertos caracteres morfométricos en los peces de estas áreas, y resolver si las poblaciones de las nuevas localidades muestreadas son también entidades diferentes. (PDF contains 76 pages.)
Resumo:
The effective stress principle has been efficiently applied to saturated soils in the soil mechanics and geotechnical engineering practice; however, its applicability to unsaturated soils is still under debate. The appropriate selection of stress state variables is essential for the construction of constitutive models for unsaturated soils. Owing to the complexity of unsaturated soils, it is difficult to determine the deformation and strength behaviors of unsaturated soils uniquely with the previous single-effective-stress variable theory and two-effective-stress-variable theory in all the situations. In this paper, based on the porous media theory, the specific expression of work is proposed, and the effective stress of unsaturated soils conjugated with the displacement of the soil skeleton is further derived. In the derived work and energy balance equations, the energy dissipation in unsaturated soils is taken into account. According to the derived work and energy balance equations, all of the three generalized stresses and the conjugated strains have effects on the deformation of unsaturated soils. For considering these effects, a principle of generalized effective stress to describe the behaviors of unsaturated soils is proposed. The proposed principle of generalized effective stress may reduce to the previous effective stress theory of single-stress variable or the two-stress variables under certain conditions. This principle provides a helpful reference for the development of constitutive models for unsaturated soils.
Resumo:
Raw soybeans were subjected to three different processing methods viz Parboiling, Toasting and Extrusion with an Intra Pro Extruder. The processed soybean meals were thereafter incorporated at equal levels into the diets of genetically improved mudfish Heterobranchus longifilis juveniles. The fish were fed the experimental diets in triplicate at 5% of their body weight for eight weeks. The growth performance and food utilization indices, namely Mean Weight Gain (MWG), Food Conversion Ratio (FCR), Specific Growth Rate (SGR%) and Protein Efficient Ratio (PER), were monitored bi-weekly. The results show that fish fed the control fishmeal diets were highest in growth performance, which was significantly different (P>0.05) from others. Among the fish fed the test diets, those fed toasted soybean had higher MWG, SGR, FCR and PER than juveniles fed the parboiled soybean diet. The juveniles fed the extruded soybean diet recorded the least growth performance. The implication of these results in diet formulation is discussed