998 resultados para Coats-Redfern method
Resumo:
The Brittle-to-ductile-transition-temperature (BDTT) of free-standing Pt-aluminide (PtAl) coating specimens, i.e. stand-alone coating specimens without any substrate, was determined by micro-tensile testing technique. The effect of Pt content, expressed in terms of the thickness of initial electro-deposited Pt layer, on the BDTT of the coating has been evaluated and an empirical correlation drawn. Increase in the electrodeposited Pt layer thickness from nil to 10 mu m was found to cause an increase in the BDTT of the coating by about 100 degrees C.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
In each stage of product development, we need to take decisions, by evaluating multiple product alternatives based on multiple criteria. Classical evaluation methods like weighted objectives method assumes certainty about information available during product development. However, designers often must evaluate under uncertainty. Often the likely performance, cost or environmental impacts of a product proposal could be estimated only with certain confidence, which may vary from one proposal to another. In such situations, the classical approaches to evaluation can give misleading results. There is a need for a method that can aid in decision making by supporting quantitative comparison of alternatives to identify the most promising alternative, under uncertain information about the alternatives. A method called confidence weighted objectives method is developed to compare the whole life cycle of product proposals using multiple evaluation criteria under various levels of uncertainty with non crisp values. It estimates the overall worth of proposal and confidence on the estimate, enabling deferment of decision making when decisions cannot be made using current information available.
Resumo:
Molecular diffusion plays a dominant role in transport of contaminants through fine-grained soils with low hydraulic conductivity. Attenuation processes occur while contaminants travel through the soils. Effective diffusion coefficient (De) is expected to take into consideration various attenuation processes. Effective diffusion coefficient has been considered to develop a general approach for modelling of contaminant transport in soils.The effective diffusion coefficient of sodium in presence of sulphate has been obtained using the column test.The reliability of De, has been checked by comparing theoretical breakthrough curves of sodium ion in soils obtained using advection diffusion equation with the experimental curve.
Resumo:
A number of geophysical methods have been proposed for near-surface site characterization and measurement of shear wave velocity by using a great variety of testing configurations, processing techniques,and inversion algorithms. In particular, two widely-used techniques are SASW (Spectral Analysis of SurfaceWaves) and MASW (Multichannel Analysis of SurfaceWaves). MASW is increasingly being applied to earthquake geotechnical engineering for the local site characterization, microzonation and site response studies.A MASW is a geophysical method, which generates a shear-wave velocity (Vs) profile (i.e., Vs versus depth)by analyzing Raleigh-type surface waves on a multichannel record. MASW system consisting of 24 channels Geode seismograph with 24 geophones of 4.5 Hz frequency have been used in this investigation. For the site characterization program, the MASW field experiments consisting of 58 one-dimensional shear wave velocity tests and 20 two-dimensional shear wave tests have been carried out. The survey points have been selected in such a way that the results supposedly represent the whole metropolitan Bangalore having an area of 220 km2.The average shear wave velocity of Bangalore soils have been evaluated for depths of 5m, 10m, 15m, 20m, 25m and 30 m. The subsoil site classification has been made for seismic local site effect evaluation based on average shear wave velocity of 30m depth (Vs30) of sites using National Earthquake Hazards Reduction Program (NEHRP) and International Building Code (IBC) classification. Soil average shearwave velocity estimated based on overburden thickness from the borehole information is also presented. Mapping clearly indicates that the depth of soil obtained from MASW is closely matching with the soil layers in bore logs. Among total 55 locations of MASW survey carried out, 34 locations were very close to the SPT borehole locations and these are used to generate correlation between Vs and corrected “N” values. The SPT field “N” values are corrected by applying the NEHRP recommended corrections.
Resumo:
This research shows a new approach and development of a design methodology, based on the perspective of meanings. In this study the design process is explored as a development of the structure of meanings. The processes of search and evaluation of meanings form the foundations of developing this structure. In order to facilitate the use and operation of the meanings, the WordNet lexical database and an existing visualization of WordNet — Visuwords — is used for the process of meaning search. The basic tool used for evaluation process is the WordNet::Similarity software, measuring the relatedness of meanings in the database. In this way it is measuring the degree of interconnections between different meanings. This kind of search and evaluation techniques are later on incorporated into our methodology of the structure of meanings to support the design process. The measures of relatedness of meanings are developed as convergence criteria for application in the processes of evaluation. Further on, the methodology for the structure of meanings developed here is used to construct meanings in a verification of product design. The steps of the design methodology, including the search and evaluation processes involved in developing the structure of the meanings, are elucidated. The choices, made by the designer in terms of meanings are supported by consequent searches and evaluations of meanings to be implemented in the designed product. In conclusion, the paper presents directions for developing and further extensions of the proposed design methodology.
Resumo:
In the near future, robots and CG (computer graphics) will be required to exhibit creative behaviors that reflect designers’ abstract images and emotions. However, there are no effective methods to develop abstract images and emotions and support designers in designing creative behaviors that reflect their images and emotions. Analogy and blending are two methods known to be very effective for designing creative behaviors. The aim of this study is to propose a method for developing designers’ abstract behavioral images and emotions and giving shape to them by constructing a computer system that supports a designer in the creation of the desired behavior. This method focuses on deriving inspiration from the behavioral aspects of natural phenomena rather than simply mimicking it. We have proposed two new methods for developing abstract behavioral images and emotions by which a designer can use analogies from natural things such as animals and plants even when there is a difference in the number of joints between the natural object and the design target. The first method uses visual behavioral images, the second uses rhythmic behavioral images. We have demonstrated examples of designed behaviors to verify the effectiveness of the proposed methods.