995 resultados para Coal seam gas
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
In the present paper the potential application of colloidal gas aphrons (CGA) to the recovery of antioxidants from wine-making waste extracts is investigated. CGA were generated by stirring a buffered solution (400 ml) of a cationic surfactant(cetyltrimethylammonium bromide, CTAB) at 8000 rpm for 10 minutes. Trials were carried out on standard solutions (2 ml) of gallic acid (GA) 200 mg/l with varying volumes of colloidal gas aphrons (20-60 ml) generated with varying concentrations of CTAB (2 and 4 mM). Influence of pH, solvent (buffered aqueous solution and ethanol), CTAB to GA molar ratio on recovery were studied. Best recovery (63%) was achieved from an aqueous solution of GA and at a CTAB to GA molar ratio of 16. Separation is mainly driven by electrostatic interactions but pH conditions are to be optimised to preserve the GA antioxidant power.
Resumo:
Examination by high temperature GC (HTGC) of the methyl esters of the so-called 'ARN' naphthenic acids from crude oils of North Sea UK, Norwegian Sea and West African oilfields revealed the distributions of resolved 4-8 ring C-80 tetra acids and trace amounts of other acids. Whilst all three oils contained apparently the same the proportions of each differed, possibly reflecting the growth tempe acids, ratures of the archaebacteria from which the acids are assumed to have originated. The structures of the 4, 5, 7 and 8 ring acids are tentatively assigned by comparison with the known 6 ring acid and related natural products and an HPLC method for the isolation of the individual acids is described. ESI-MS of individual acids isolated by preparative HPLC established the elution order of the 4-8 ring acids on the HPLC and HTGC systems and revealed the presence of previously unreported acids tentatively identified as C-81 and C-82 7 and 8 ring analogues.
The dynamic development and distribution of gas cells in breadmaking dough during proving and baking
Resumo:
Time dependent gas hold-up generated in the 0.3 and 0.6 m diameter vessels using high viscosity castor oil and carboxy methyl cellulose (CMC) solution was compared on the basis of impeller speed (N) and gas velocity (V-G). Two types of hold-up were distinguished-the hold-up due to tiny bubbles (epsilon(ft)) and total hold-up (epsilon(f)), which included large and tiny bubbles. It was noted that vessel diameter (i.e. the scale of operation) significantly influences (i) the trends and the values of epsilon(f) and epsilon(ft), and (ii) the values of tau (a constant reflecting the time dependency of hold-up). The results showed that a scale independent correlation for gas hold-up of the form epsilon(f) or epsilon(ft) = A(N or P-G/V)(a) (V-G)(b), where "a" and "b" are positive constants is not appropriate for viscous liquids. This warrants further investigations into the effect of vessel diameter on gas hold-up in impeller agitated high viscosity liquids (mu or mu(a) > 0.4 Pa s). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This study was carried out to examine the effect or inulin (IN), fructooligosaccharide (FOS), polydextrose (POL) and isomaltooligosaccharides (ISO), alone and in combination, on gas production, gas composition and prebiotic effects. Static batch culture fermentation was performed with faecal samples from three healthy volunteers to study the volume and composition of gas generated and changes in bacterial populations. Four carbohydrates alone or mixed with one another (50:50) were examined. Prebiotic index (PI) was calculated and used to compare the prebiotic effect. The high amount of gas produced by IN was reduced by mixing it with FOS. No reduction in gas generation was observed when POL and ISO mixed with other substrates. It was found that the mixture of IN and FOS was effective in reducing the amount of gas produced while augmenting or maintaining their potential to Support the growth of bifidobacteria in Faecal batch culture as the highest PI was achieved with FOS alone and a mixture of FOS and IN. It was also found that high volume of gas was generated in presence of POL and ISO and they had lower prebiotic effect. The results of this study imply that a Mixture of prebiotics could prove effective in reducing the amount of gas generated by the gut microflora. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The recovery of lactoferrin and lactoperoxidase from sweet whey was studied using colloidal gas aphrons (CGAs), which are surfactant-stabilized microbubbles (10-100 mum). CGAs are generated by intense stirring (8000 rpm for 10 min) of the anionic surfactant AOT (sodium bis-2-ethylhexyl sulfosuccinate). A volume of CGAs (10-30 mL) is mixed with a given volume of whey (1 - 10 mL), and the mixture is allowed to separate into two phases: the aphron (top) phase and the liquid (bottom) phase. Each of the phases is analyzed by SDS-PAGE and surfactant colorimetric assay. A statistical experimental design has been developed to assess the effect of different process parameters including pH, ionic strength, the concentration of surfactant in the CGAs generating solution, the volume of CGAs and the volume of whey on separation efficiency. As expected pH, ionic strength and the volume of whey (i.e. the amount of total protein in the starting material) are the main factors influencing the partitioning of the Lf(.)Lp fraction into the aphron phase. Moreover, it has been demonstrated that best separation performance was achieved at pH = 4 and ionic strength = 0.1 mol/L i.e., with conditions favoring electrostatic interactions between target proteins and CGAs (recovery was 90% and the concentration of lactoferrin and lactoperoxidase in the aphron phase was 25 times higher than that in the liquid phase), whereas conditions favoring hydrophobic interactions (pH close to pI and high ionic strength) led to lower performance. However, under these conditions, as confirmed by zeta potential measurements, the adsorption of both target proteins and contaminant proteins is favored. Thus, low selectivity is achieved at all of the studied conditions. These results confirm the initial hypothesis that CGAs act as ion exchangers and that the selectivity of the process can be manipulated by changing main operating parameters such as type of surfactant, pH and ionic strength.
Resumo:
Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures of 25-60degreesC. Strain hardening and failure strain of cell walls both decreased with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties at higher temperatures (60degreesC), while the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50degreesC) and had lower strain hardening. Strain hardening measured at 50degreesC gave good correlations with baking volume, with the best correlations achieved between rheological measurements and baking tests that used similar mixing conditions. As predicted by the considered failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to strain hardening properties, and that extensional rheological measurements can be used as indicators of baking quality.
Resumo:
The aim of this study is to investigate the mechanism responsible for the recovery of astaxanthin using Colloidal Gas Aphrons (CGA), which are surfactant stabilised microbubbles. The latter were produced using different surfactant solutions (Cetyl Trimethyl Ammonium Bromide (CTAB)-cationic, Sodium Dodecyl Sulfate (SDS)-anionic, TWEEN 60-non-ionic and mixtures of TWEEN 60-SPAN 80- non-ionic with varying hydrophobicity) at stirring speed 8000 rpm and stirring time 5 min. Experiments were carried out at varying pH and volumetric ratios of astaxanthin to CGA, and with two different astaxanthin standard suspensions: (i) astaxanthin dispersed in aqueous solutions and (ii) astaxanthin dispersed in ethanolic/aqueous solutions with different compositions of ethanol (20/80 (v/v) and 40/60 (v/v)). When astaxanthin is dispersed in aqueous solutions the separation seems to occur mainly by electrostatic interactions. Therefore the recoveries are higher in the case of the cationic surfactant when astaxanthin particles are strongly negatively charged, as shown by the zeta potential measurements. When ethanol is present, highest recoveries are achieved with CGA produced from the non-ionic surfactant, which indicates that, under these conditions, separation is driven mainly by hydrophobic interactions. In experiments with ethanolic/aqueous suspensions, when the hydrophobicity of the surfactant was increased by increasing volumes of SPAN 80, the CGA produced were less stable; thus higher recoveries of astaxanthin under conditions that favour hydrophobic interactions were not observed. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
BACKGROUND: There is an increasing interest in obtaining natural products with bioactive properties, using fermentation technology. However, the downstream processing consisting of multiple steps can be complicated, leading to increase in the final cost of the product. Therefore there is a need for integrated, cost-effective and scalable separation processes. RESULTS: The present study investigates the use of colloidal gas aphrons (CGA), which are surfactant-stabilized microbubbles, as a novel method for downstream processing. More particularly, their application for the recovery of astaxanthin from the cells of Phaffia rhodozyma is explored. Research carried out with standard solutions of astaxanthin and CGA generated from the cationic surfactant hexadecyl. trimethyl ammonium bromide (CTAB) showed that up to 90% recovery can be achieved under optimum conditions, i.e., pH 11 with NaOH 0.2 mol L-1. In the case of the cells' suspension from the fermentation broth, three different approaches were investigated: (a) the conventional integrated approach where CGA were applied directly; (b) CGA were applied to the clarified suspension of cells; and finally (c) the in situ approach, where CGA are generated within the clarified suspension of cells. Interestingly, in the case of the whole suspension (approach a) highest recoveries (78%) were achieved under the same conditions found to be optimal for the standard solutions. In addition, up to 97% recovery of total carotenoids could be achieved from the clarified suspension after pretreatment with NaOH. This pretreatment led to maximum cell disruption as well as optimum conditioning for subsequent CGA separation. CONCLUSIONS: These results demonstrate the potential of CGA for the recovery of bioactive components from complex feedstock. (c) 2008 Society of Chemical Industry.
Resumo:
Annatto dyes are widely used in food and are finding increasing interest also for their application in the pharmaceutical and cosmetics industry. Bixin is the main pigment extracted from annatto seeds and accounts for 80% of the carotenoids in the outer coat of the seeds; norbixin being the water-soluble form of the bixin. Typically annatto dyes are extracted from the seeds by mechanical means or solutions of alkali, edible oil or organic solvents, or a combination of the two depending on the desired final product. In this work CGAs are investigated as an alternative separation method for the recovery of norbixin from a raw extraction solution of annatto pigments in KOH. A volume of CGAs generated from a cationic surfactant (CTAB) solution is mixed with a volume of annatto solution and when the mixture is allowed to settle it separates into the top aphron phase and the bottom liquid phase. Potassium norbixinate presented in the annatto solution will interact with the surfactant in the aphron phase, which results in the effective separation of norbixin. Recovery= 94% was achieved at a CTAB to norbixin molar ratio of 3.3. In addition a mechanism of separation is proposed here based on the separation results with the cationic surfactant and an anionic surfactant (bis-2-ethyl hexyl sulfosuccinate, AOT) and measurements of surfactant to norbixin ratio in the aphron phase; electrostatic interactions between the surfactant and norbixin molecules result in the fort-nation of a coloured complex and effective separation of norbixin. (c) 2005 Elsevier B.V. All rights reserved.