887 resultados para Cluster structure of atomic nuclei
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anopheles darlingi is the most important Brazilian malaria vector, with a widespread distribution in the Amazon forest. Effective strategies for vector control could be better developed through knowledge of its genetic structure and gene flow among populations, to assess the vector diversity and competence in transmitting Plasmodium. The aim of this study was to assess the genetic diversity of An. darlingi collected at four locations in Porto Velho, by sequencing a fragment of the ND4 mitochondrial gene. From 218 individual mosquitoes, we obtained 20 different haplotypes with a diversity index of 0.756, equivalent to that found in other neotropical anophelines. The analysis did not demonstrate significant population structure. However, haplotype diversity within some populations seems to be over-represented, suggesting the presence of sub-populations, but the presence of highly represented haplotypes complicates this analysis. There was no clear correlation among genetic and geographical distance and there were differences in relation to seasonality, which is important for malarial epidemiology.
Resumo:
Specimens of the zipper sand skate Psammobatis extenta were collected in the region of Ubatuba off the northern coast of the State of São Paulo, Brazil, monthly for once year (January - December 2000), at 25- to 40-m isobaths. A total of 123 individuals were caught. The total length (TL) of females averaged 224.6 mm, and of males 217 mm. The overall sex ratio was 1:1. Analysis of the length-weight relationship indicated the existence of positive allometry in females, and isometry in males. The length at onset of sexual maturity was determined for both sexes; females reached sexual maturity at smaller sizes than males (TL50 = 230.7 and TL50 = 237.7 mm respectively). Females showed functional parity of both ovaries and uteri. Females that were pregnant or were carrying vitellogenic oocytes were observed during nine of 12 months of the survey, indicating a continuous reproductive cycle. Psammobatis extenta was most abundant from January to April, and again from June to October. Most individuals were collected at the 40-m isobath. Both adults and neonates were collected in the study area. However, adolescent skates were scarce, which either indicates differential occupation of the area, or suggests that the shallow waters of the continental shelf are used as breeding grounds.
Resumo:
Two fish species, one top predator (Imparfinis mirini) and one intermediate detritivorous species (Hisonotus depressicauda), were experimentally manipulated to evaluate their relative importance in structuring the periphytic community, as well as their effects on the other trophic levels. An enclosure experiment was conducted in the Potreirinho creek, a second order tributary of Paranapanema River, SE Brazil. Five treatments were used: enclosure of the predator species. enclosure of the detritivorous species, enclosure of both together, exclusion of all fish species (closed control cage), and cage open to all fish community, (open control). Through direct and indirect effects, I. mirini, when alone gave rise to a trophic cascade that resulted in a positive effect on algal resources. Through direct effects, H. depressicauda. when alone, reduced the amount of organic matter, resulting in a positive indirect effect on algae. In addition, when the two species were enclosed together, only the effects determined by the detritivorous species were present. The results indicate the important role of the intermediate detritivorous species in the maintenance of the composition and trophic structure of the analyzed community by reducing the effects caused by the top predator.
Resumo:
In human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic Study of human PNP complexed with acyclovir (HsPNP:Acy). Acyclovir is a potent clinically useful inhibitor of replicant herpes simplex virus that also inhibits human PNP but with a relatively lower inhibitory activity (K-i=90muM). Analysis of the structural differences among the HsPNP:Acy complex, PNP apoenzyme, and HsPNP:Immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design. (C) 2003 Published by Elsevier B.V.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3 Angstrom resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7 Angstrom resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 Angstrom resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme, which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effects on B-cell function. Human PNP has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Here we report the crystal structure of human PNP in complex with hypoxanthine, refined to 2.6 Angstrom resolution. The intermolecular interaction between ligand and PNP is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Tuberculosis made a resurgence in the mid-1980s and now kills approximately 3 million people a year. The re-emergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons and the proliferation of multi-drug-resistant strains have created a need to develop new drugs. Shikimate kinase and other enzymes in the shikimate pathway are attractive targets for development of non-toxic antimicrobial agents, herbicides and anti-parasitic drugs, because the pathway is essential in these species whereas it is absent from mammals. The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid ( shikimate) has been determined at 2.3 Angstrom resolution, clearly revealing the amino-acid residues involved in shikimate binding. This is the first three-dimensional structure of shikimate kinase complexed with shikimate. In MtSK, the Glu61 residue that is strictly conserved in shikimate kinases forms a hydrogen bond and salt bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81 and Arg136 and the hydroxyl groups interact with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for the elucidation of the mechanism of the shikimate kinase-catalyzed reaction and for the development of a new generation of drugs against tuberculosis.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design. Here we report the structure of human PNP solved to 2.3 Angstrom resolution using synchrotron radiation and cryocrystallographic techniques. This structure allowed a more precise analysis of the active site, generating a more reliable model for substrate binding. The higher resolution data allowed the identification of water molecules in the active site, which suggests binding partners for potential ligands. Furthermore, the present structure may be used in the new structure-based design of PNP inhibitors. (C) 2003 Published by Elsevier B.V.
Resumo:
Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine-salvage pathway, which allows cells to utilize preformed bases and nucleosides in order to synthesize nucleotides. PNP is specific for purine nucleosides in the beta-configuration and exhibits a strong preference for purines containing a 6-keto group and ribosyl-containing nucleosides relative to the corresponding analogues. PNP was crystallized in complex with ligands and data collection was performed using synchrotron radiation. This work reports the structure of human PNP in complex with guanosine (at 2.80 angstrom resolution), 3' deoxyguanosine (at 2.86 angstrom resolution) and 8-azaguanine (at 2.85 angstrom resolution). These structures were compared with the PNP-guanine, PNP-inosine and PNP-immucillin-H complexes solved previously.
Resumo:
In bacteria, fungi, plants, and apicomplexan parasites, the aromatics compounds, such as aromatics amino acids, are synthesized through seven enzymes from the shikimate pathway, which are absent in mammals. The absence of this pathway in mammals make them potential targets for development of new therapy against infectious diseases, such as tuberculosis, which is the world's second commonest cause of death from infectious disease. The last enzyme of shikimate pathway is the chorismate synthase (CS), which is responsible for conversion of the 5-enolpyruvylshikimate-3-phosphate to chorismate. Here, we report the crystallographic structure of CS from Mycobacterium tuberculosis (MtCS) at 2.65 angstrom resolution. The MtCS structure is similar to other CS structures, presenting beta-alpha-beta sandwich structural topology, in which each monomer of MtCS consists of a central helical core. The MtCS can be described as a tetramer formed by a dimer of dimers. However, analytical ultracentrifugation studies suggest the MtCS is a dimer with a more asymmetric shape than observed on the crystallographic dimer and the existence of a low equilibrium between dimer and tetramer. Our results suggest that the MtCS oligomerization is concentration dependent and some conformational changes must be involved on that event. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bivalve filter feeders are sessile animals that live in constant contact with water and its pollutants. Their gill is an organ highly exposed to these conditions due to its large surface and its involvement in gas exchanges and feeding. The bivalve Mytella falcata is found in estuaries of Latin America, on the Atlantic as well as the Pacific Coast. It is commonly consumed, and sometimes is the only source of protein of low-income communities. In this study, gill filaments of M. falcata were characterized using histology, histochemistry and transmission electron microscopy for future comparative studies among animals exposed to environmental pollutants. Gill filaments may be divided into abfrontal, intermediate and frontal zones. Filaments are interconnected by ciliary discs. In the center of filaments, haemocytes circulate through a haemolymph vessel internally lined by an endothelium and supported by an acellular connective tissue rich in polysaccharides and collagen. The abfrontal zone contains cuboidal cells, while the intermediate zone consists of a simple squamous epithelium. The frontal zone is composed of five columnar cell types: one absorptive, mainly characterized by the presence of pinocytic vesicles in the apical region of the cell; one secretory, rarely observed and three ciliated with abundant mitochondria. All cells lining the filament exhibit numerous microvilli and seem to absorb substances from the environment. PAS staining was observed in mucous cells in the frontal and abfrontal zones. Bromophenol blue allowed the distinction of haemocytes and detection of a glycoprotein secretion in the secretory cells of the frontal region. The characteristics of M. falcata gill filaments observed in this study were very similar to those of other bivalves, especially other Mytilidae, and are suitable for histopathological studies on the effect of water-soluble pollutants. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Cytochemistry studies of the nuclei of the venom glands' cells of worker bees of Apis mellifera indicated that there is a higher activity in the young workers while there is a predominance of degenerative characteristics in the older workers. In addition, we demonstrated that there is an occurrence of differential nuclear synthetic activities between the cells of the distal and the proximal regions of the secretory filament and of the venom reservoir. Signs of a higher nuclear activity were evidenced at the distal regions of this gland in 14-day old workers, while at the more proximal regions of the venom gland of 40-day old workers we identified the most obvious signs of degeneration. Therefore, it was evident that the process of glandular degeneration begins at the distal region of the venom gland instead of beginning at the proximal region as had been established previously. In addition, characteristics of nuclear synthetic activities were noted in the cells of the proximal region of the reservoir; these cells were thought to be non-secretory.