941 resultados para Classical super-integrable field theory
Resumo:
This dissertation surveys the literature on economic growth. I review a substantial number of articles published by some of the most renowned researchers engaged in the study of economic growth. The literature is so vast that before undertaking new studies it is very important to know what has been done in the field. The dissertation has six chapters. In Chapter 1, I introduce the reader to the topic of economic growth. In Chapter 2, I present the Solow model and other contributions to the exogenous growth theory proposed in the literature. I also briefly discuss the endogenous approach to growth. In Chapter 3, I summarize the variety of econometric problems that affect the cross-country regressions. The factors that contribute to economic growth are highlighted and the validity of the empirical results is discussed. In Chapter 4, the existence of convergence, whether conditional or not, is analyzed. The literature using both cross-sectional and panel data is reviewed. An analysis on the topic of convergence using a quantile-regression framework is also provided. In Chapter 5, the controversial relationship between financial development and economic growth is analyzed. Particularly, I discuss the arguments in favour and against the Schumpeterian view that considers financial development as an important determinant of innovation and economic growth. Chapter 6 concludes the dissertation. Summing up, the literature appears to be not fully conclusive about the main determinants of economic growth, the existence of convergence and the impact of finance on growth.
Resumo:
We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Massless scalar and vector fields are coupled to the Lyra geometry by means of the Duffin-Kemmer-Petiau (DKP) theory. Using the Schwinger variational principle, the equations of motion, conservation laws and gauge symmetry are implemented. We find that the scalar field couples to the anholonomic part of the torsion tensor, and the gauge symmetry of the electromagnetic field does not break by the coupling with torsion.
Resumo:
The zero curvature representation for two-dimensional integrable models is generalized to spacetimes of dimension d + 1 by the introduction of a d-form connection. The new generalized zero curvature conditions can be used to represent the equations of motion of some relativistic invariant field theories of physical interest in 2 + 1 dimensions (BF theories, Chern-Simons, 2 + 1 gravity and the CP1 model) and 3 + 1 dimensions (self-dual Yang-Mills theory and the Bogomolny equations). Our approach leads to new methods of constructing conserved currents and solutions. In a submodel of the 2 + 1-dimensional CP1 model, we explicitly construct an infinite number of previously unknown non-trivial conserved currents. For each positive integer spin representation of sl(2) we construct 2j + 1 conserved currents leading to 2j + 1 Lorentz scalar charges. (C) 1998 Elsevier B.V. B.V.
Resumo:
We study the massless Duffin-Kemmer-Petiau (DKP) equation in Riemannian space-times, particularly the massless spin 1 sector which reproduces the free Maxwell's equations.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, theta) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the d = 10 superstring.
Resumo:
We investigate the conformal invariance of massless Duffin-Kemmer-Petiau theory coupled to Riemannian spacetimes. We show that, as usual, in the minimal coupling procedure only the spin I sector of the theory - which corresponds to the electromagnetic field - is conformally invariant. We also show that the conformal invariance of the spin 0 sector can be naturally achieved by introducing a compensating term in the Lagrangian. Such a procedure - besides not modifying the spin I sector - leads to the well-known conformal coupling between the scalar curvature and the massless Klein-Gordon-Fock field. Going beyond the Riemannian spacetimes, we briefly discuss the effects of a nonvanishing torsion in the scalar case.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
In the present work we study an anisotropic layered superconducting film of finite thickness. The film surfaces are considered parallel to the be face of the crystal. The vortex lines are oriented perpendicular to the film surfaces and parallel to the superconducting planes. We calculate the local field and the London free energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super conducting surface.
Resumo:
We calculate three- and four-point functions in super Liouville theory coupled to a super Coulomb gas on world sheets with spherical topology. We first integrate over the zero mode and assume that a parameter takes an integer value. We find the amplitudes, give plausibility arguments in favor of the result, and formally continue the parameter to an arbitrary real number. Remarkably the result is completely parallel to the bosonic case.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, θ) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the D = 10 superstring. © SISSA/ISAS 2004.
Resumo:
As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.
Resumo:
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.