999 resultados para Cibicides lobatulus, d13C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649-2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of composition and distribution of benthic foraminifers in six samples of bottom sediments obtained in the southeast Kandalaksha Bay of the White Sea at water depths of 20 to 155 m revealed their dependence on lithology and different hydrological characteristics. It is shown that living foraminifers populating relatively shallow areas of the bay (20-60 m), which are bathed by seasonally warmed intermediate water with temperature 0.7-1.5°C and salinity 26 per mil, are characterized by high abundance (250-750 specimens/10 ccm of wet sediment) and prevalence of agglutinated species (Eggerella advena, Recurvoides turbinatus, and others). Deeper (155 m) where cold and relatively saline deep water occurs (-1.4°C, 29.5 per mil), abundance is an order lower (30 specimens/10 ccm) and is dominated by calcareous taxa Cassidulina reniforme, an Arctic cold resistant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

here is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the "Clathrate Gun Hypothesis" (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past water column stratification can be assessed through comparison of the d18O of different planktonic foraminiferal species. The underlying assumption is that different species form their shells simultaneously, but at different depths in the water column. We evaluate this assumption using a sediment trap time-series of Neogloboquadrina pachyderma (s) and Globigerina bulloides from the NW North Atlantic. We determined fluxes, d18O and d13C of shells from two size fractions to assess size-related effects on shell chemistry and to better constrain the underlying causes of isotopic differences between foraminifera in deep-sea sediments. Our data indicate that in the subpolar North Atlantic differences in the seasonality of the shell flux, and not in depth habitat or test size, determine the interspecies Delta d18O. N. pachyderma (s) preferentially forms from early spring to late summer, whereas the flux ofG. bulloides peaks later in the season and is sustained until autumn. Likewise, seasonality influences large and small specimens differently, with large shells settling earlier in the season. The similarity of the seasonal d18O patterns between the two species indicates that they calcify in an overlapping depth zone close to the surface. However, their d13C patterns are markedly different (>1 per mil). Both species have a seasonally variable offset from d13CDIC that appears to be governed primarily by temperature, with larger offsets associated with higher temperatures. The variable offset from d13CDIC implies that seasonality of the flux affects the fossil d13C signal, which has implications for reconstruction of the past oceanic carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable oxygen- and carbon-isotope ratios of Rhaetian (upper Triassic) limestone samples from the Wombat Plateau, northwest Australia, were measured to explore possible diagenetic pathways that the material underwent after deposition in a shallow-water environment, before plateau submergence in the Early Cretaceous. Host sediment isotopic values cluster near typical marine carbonate values (d18O ranging from -2.57 per mil to +1.78 per mil and d13C, from +2.45 per mil to +4.01 per mil). Isotopic values of equant clear calcite lining or filling rock pores also plot in the field of marine cements (d18O = +1.59 per mil to -2.24 per mil and d13C = +4.25 per mil to +2.57 per mil), while isotopic values for neomorphic calcites replacing skeletal (megalodontid shell) carbonate material show a wider scatter of oxygen and carbon values, d18O ranging from +2.73 per milo to -6.2 per mil and d13C, from +5.04 per mil to +1.22 per mil. Selective dissolution of metastable carbonate phases (aragonite?) and neomorphic replacement of skeletal material probably occurred in a meteoric phreatic environment, although replacement products (inclusion-rich microspar, clear neomorphic spar, etc.) retained the original marine isotopic signature because transformation probably occurred in a closed system dominated by the composition of the dissolving phases (high rock/water ratio). The precipitation of late-stage equant (low-Mg?) calcite cement in the pores occurred in the presence of normal marine waters, probably in a deep-water environment, after plateau drowning. Covariance of d18O and d13C toward negative values indeed suggests influence of meteorically modified fluids. However, none of the samples shows negative carbon values, excluding the persistence of organic-rich soils on subaerial karstic surfaces (Caribbean-style diagenesis). Petrographical and geochemical data are consistent with the sedimentological evidence of plateau drowning in post-Rhaetian times and with a submarine origin of the >70-m.y.-long Jurassic hiatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basaltic rocks of Hole 794D drilled during Leg 128 are strongly altered. Microprobe analyses and XRD spectra on small quantities of matter extracted from thin sections show that primary minerals and glassy zones of the groundmass are totally or partially replaced by clay minerals with chlorite/saponite mixed-layer composition whatever the rock sample considered. This mixed-layer was also identified in veins and vesicles where it crystallizes in spheroidal aggregates. The largest veins and vesicles are filled by a zoned deposit: the chlorite/saponite mixed-layer always occupies the central part and is rimmed by pure saponite. Calcite crystallizes in secondary fractures which crosscut the clayey veins and vesicles. Chemographic analysis based on the M+-4Si-3R2+ projection shows that the chemical composition of the saponite component in the mixed-layer is identical to that of the free saponite. This indicates that the clay mineral crystallization was controlled by the chemical composition of the alteration fluids. From petrographic evidence, it is suggested that both chlorite/saponite mixed-layer and free saponite belong to the same hydrothermal event and are produced by a temperature decrease. This is supported by the stable isotopic data. The isotopic data show very little variation: d18O saponite ranges from 13.1 per mil to 13.5 per mil, and dD saponite from -73.6 per mil to -70.0 per mil. d18O calcite varies from +19.7 per mil to +21.9 per mil vs SMOW and d13C from -3.2 per mil to +0.4 per mil vs. PDB. These values are consistent with seawater alteration of the basalt. The formation of saponite took place at 150°-180°C and the formation of calcite at about 65°C.