924 resultados para Chromatography Mass-spectrometry
Resumo:
Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degreesC target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to similar to 13% moisture at 180 degreesC in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degreesC, reached a maximum at pH 6.S at 150 degreesC, and increased with increasing pH at 120 degreesC. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by > 60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased similar to3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.
Resumo:
The importance of the frying oil as a heat-transfer medium and as a source of flavor precursors for the formation of potato chip flavor was investigated. Potato slices were fried in palmolein or silicone fluid, and the volatile flavor compounds of the resulting chips were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. Although the heat-transfer coefficients of the oils did not differ significantly, their temperature profiles during frying were different, probably due to greater turbulence on placing potato slices in palmolein, leading to more efficient heat transfer. Levels of Strecker aldehydes and sulfides in chips fried in the two media were not significantly different, but levels of pyrazines were significantly higher in palmolein-fried chips. Amounts of 2,4-decadienal were also significantly higher in palmolein-fried chips, but there was no significant difference in hexanal levels between the samples.
Resumo:
Sugars and amino acids were removed from potato slices by soaking in water and ethanol. They were then infused with various combinations of sugars (glucose and/or fructose) and amino acids (asparagine, glutamine, leucine, isoleucine, phenylalanine, and/or methionine) and fried. Volatile compounds were trapped onto Tenax prior to gas chromatography-mass spectrometry. Relative amounts of compounds (relative to the internal standard) and relative yields (per mole of amino acid infused into the slices) were determined. Amounts of 10 pyrazines, 4 Strecker aldehydes, and 4 other compounds were monitored. Relative amounts and relative yields of compounds varied according to the composition of the system. For the single amino acid-glucose systems, leucine gave the highest relative amount and relative yield of its Strecker aldehyde. Asparagine and phenylalanine gave the highest total relative amount and total relative Yield, respectively, of pyrazines. In the system containing all of the amino acids and glucose, the relative amount of 3-methylbutanal was higher, whereas the amounts of the other monitored Strecker aldehydes were lower. Most of the relative amounts of individual pyrazines were lower compared to the glucose-asparagine system, whereas the total relative yield of pyrazines was lower, compared to all of the single amino acid-glucose mixtures. Addition of fructose to the mixed amino acid-glucose model system generated Strecker aldehydes and pyrazines in ratios that were more similar to those of untreated potato chips than to those from the same system but without fructose. Both the sugars and the amino acids present in potato are crucial to the development of flavor compounds in fried potato slices.
Resumo:
Mixtures of cysteine, reducing sugar (xylose or glucose), and starch were extrusion cooked using feed pH values of 5.5, 6.5, and 7.5 and target die temperatures of 120, 150, and 180 degreesC. Volatile compounds were isolated by headspace trapping onto Tenax and analyzed by gas chromatography-mass spectrometry. Eighty and 38 compounds, respectively, were identified from extrudates prepared using glucose and xylose. Amounts of most compounds increased with temperature and pH. Aliphatic sulfur compounds, thiophenes, pyrazines, and thiazoles were the most abundant chemical classes for the glucose samples, whereas for xylose extrudates highest levels were obtained for non-sulfur-containing furans, thiophenes, sulfur-containing furans, and pyrazines. 2-Furanmethanethiol and 2-methyl-3-furanthiol were present in extrudates prepared using both sugars, but levels were higher in xylose samples. The profiles of reaction products were different from those obtained from aqueous or reduced-moisture systems based on cysteine and either glucose or ribose.
Resumo:
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography-mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gamma-proteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
Resumo:
19-Nortestosterone (beta-NT) is banned for use as a growth promoter in food animals within the European Union. For regulatory control purposes, urine and bile samples are routinely screened by immunoassay. The aim of the present study was to compare the ability of two immunoassays, using two rabbit polyclonal antibodies raised against two different NT derivatives, to detect NT residues in bovine bile. One antiserum cross-reacted with both alpha-NT and beta-NT (alpha/beta-NT), whereas the other was specific for alpha-NT. Bile samples from 266 slaughtered cattle were deconjugated and analyzed using both antibodies, with all screening positives (>2 ng ml(-1)) confirmed by high resolution gas chromatography mass spectrometry. The alpha/beta-NT and alpha-NT antibody-based ELISAs screened 39 and 44 samples positive, respectively, with NT confirmed in 22 and 39, respectively. The alpha/beta-NT antibody-based ELISA produced a false-negative rate of 44% compared to 0% for the alpha-NT antibody-based ELISA. Supplementary investigations concluded that a matrix effect was a major cause of the marked differences in false-negative rates. This result underlines the necessity to validate immunoassays in the sample matrix.
Resumo:
Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.
Proteolytic cleavage of elafin by 20S proteasome may contribute to inflammation in acute lung injury
Resumo:
RATIONALE:
We hypothesise that elafin levels in acute lung injury (ALI) decrease over time due, in part, to proteolytic degradation as observed in other lung diseases.
OBJECTIVES:
The aim of this study was to characterise temporal changes in elafin concentration in patients with ALI and to evaluate whether a decrease in elafin levels is due to elevated protease activity.
METHODS:
Bronchoalveolar lavage fluid (BALF) was obtained from patients with ALI within 48 h of onset of ALI (day 0), at day 3 and at day 7. Elafin levels were quantified by ELISA. Elafin susceptibility to proteolytic cleavage by ALI BALF was assessed by Western blot and by high-performance liquid chromatography-mass spectrometry.
MEASUREMENTS AND MAIN RESULTS:
Elafin levels were found to be significantly increased at the onset of ALI compared with healthy volunteers and fell significantly by day 7 compared with day 0. In contrast, levels of secretory leukocyte protease inhibitor did not decrease over time. This decrease in elafin was due to cleavage by the 20S proteasome which was significantly increased in ALI BALF. Incubation of ALI BALF with the proteasome inhibitor epoxomicin confirmed that 20S proteasome protease activity was responsible for proteolytic cleavage of elafin, resulting in diminished anti-elastase activity. In addition, free neutrophil elastase activity significantly increased in ALI BALF from day 0 to day 7.
CONCLUSIONS:
Elafin concentrations fall within the pulmonary compartment over the course of ALI as a result of proteolytic degradation. This loss of elafin may predispose people, in part, to excessive inflammation in ALI.
Resumo:
In 2006, India, Pakistan, and Nepal banned the manufacture of veterinary formulations of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac. This action was taken to halt the unprecedented decline of three Gyps vulture species that were being poisoned by diclofenac residues commonly present in carcasses of domestic livestock upon which they scavenged. To assess the affect of this ban and evaluate residue prevelances of other NSAIDs, we present a method to detect diclofenac and eight more NSAIDs by liquid chromatography-mass spectrometry and apply this to 1488 liver samples from carcasses of livestock taken across seven Indian states. Diclofenac was present in 11.1% of samples taken between April and December 2006, and meloxicam (4%), ibuprofen (0.6%), and ketoprofen (0.5%) were also detected. Although meloxicam is safe for a range of avian scavengers, including Gypsvultures, data regarding the safety of other NSAIDs is currently limited. If wild Gyps on the Indian subcontinent are to survive, diclofenac bans must be completely effective, and NSAIDs that replace it within the veterinary drug market must be of low toxicity toward Gyps and other scavenging birds.
Resumo:
Two species of earthworm, Lumbricus rubellus Hoffmeister and Dendrodrilus rubidus (Savigny) collected from an arsenic-contaminated mine spoil site and an uncontaminated site were investigated for total tissue arsenic concentrations and for arsenic compounds by liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). For L. rubellus, whole-body total tissue arsenic concentrations were 7.0 to 17.0 mg arsenic/ kg dry weight in uncontaminated soil and 162 to 566 mg arsenic/kg dry weight in contaminated soil. For D. rubidus, whole-body tissue concentrations were 2.0 to 5.0 mg arsenic/kg dry weight and 97 to 321 mg arsenic/kg dry weight, respectively. Arsenobetaine was the only organic arsenic species detected in both species of earthworms, with the remainder of the extractable arsenic being arsenate and arsenite. There was an increase in the proportion of arsenic present as arsenobetaine in the total arsenic burden. Lumbricus rubellus and D. rubidus have similar life styles, both being surface living and litter feeding. Arsenic speciation was found to be similar in both species for both uncontaminated and contaminated sites, with dose-dependent formation of arsenobetaine. When L. rubellus and D. rabidus from contaminated sites were incubated in arsenic-free soils, the total tissue burden of arsenic diminished. Initially, L. rubellus from the tolerant populations (from the contaminated site) eliminated arsenic in the first 7 d of exposure before accumulating arsenic in tissues, whereas nontolerant populations (from the uncontaminated site) accumulated arsenic linearly. The tolerant and nontolerant L. rubellus eliminated tissue arsenic linearly over 21 d when incubated in uncontaminated soil.
Resumo:
Fumonisins are mycotoxins produced by Fusarium spp. and commonly contaminate maize and maize products worldwide. Fumonisins are rodent carcinogens and have been associated with human esophageal cancer. However, the lack of a valid exposure biomarker has hindered both the assessment of human exposure and the evaluation of disease risk. A sensitive liquid chromatography-mass spectrometry method to measure urinary fumonisin B1 (FB1) following extraction on Oasis MAX cartridges was established and applied to urine samples from women in a cohort recruited in Morelos County, Mexico. Urinary FB1 was compared with dietary information on tortilla consumption. FB1 recovery in spiked samples averaged 94% as judged by deuterium-labeled FB1 internal standard. Urinary FB1 was determined in 75 samples from women selected based on low, medium, or high consumption of maize-based tortillas. The geometric mean (95% confidence interval) of urinary FB1 was 35.0 (18.8-65.2), 63.1 (36.8-108.2), and 147.4 (87.6-248.0) pg/mL and the frequency of samples above the detection limit (set at 20 pg FB1/mL urine) was 45%, 80%, and 96% for the low, medium, and high groups, respectively. Women with high intake had a 3-fold higher average FB1 levels compared with the "low intake" group (F = 7.3; P = 0.0015). Urinary FB1 was correlated with maize intake (P-trend = 0.001); the correlation remained significant after adjusting for age, education, and place of residence. This study suggests that measurement of urinary FB1 is sufficiently sensitive for fumonisin exposure assessment in human populations and could be a valuable tool in investigating the associated health effects of exposure.
Resumo:
BACKGROUND: Deoxynivalenol (DON) is a toxic fungal metabolite that frequently contaminates cereal crops. DON is toxic to animals, but the effects on humans are poorly understood, in part because exposure estimates are of limited precision.
OBJECTIVES: In this study we used the U.K. adult National Diet and Nutrition Survey to compare 24-hr urinary DON excretion with cereal intake.
METHODS: One hundred subjects were identified for each of the following cereal consumption groups: low (mean, 107 g cereal/day; range, 88-125), medium (mean, 179 g/day; range, 162-195) and high (mean, 300 g/day, range, 276-325). DON was analyzed in 24-hr urine samples by liquid chromatography mass spectrometry after purification on immunoaffinity columns.
RESULTS: DON was detected in 296 of 300 (98.7%) urine samples. Cereal intake was significantly associated with urinary DON (P < 0.0005), with the geometric mean urinary levels being 6.55 mu g DON/day [95% confidence interval (CI), 5.71-7-531; 9.63 mu g/day (95% Cl, 8.39-11.05); and 13.24 mu g/day (95% Cl, 11.54-15.19) for low-, medium-, and high-intake groups, respectively. In multivariable analysis, wholemeal bread (p < 0.0005), white bread (p < 0.0005), "other" bread (p < 0.0005), buns/cakes (p = 0.003), high-fiber breakfast cereal (p = 0.016), and pasta (p = 0.017) were significantly associated with urinary DON. Wholemeal bread was associated with the greatest percent increase in urinary DON per unit of consumption, but white bread contributed approximately twice as much as wholemeal bread to the urinary DON levels because it was consumed in higher amounts.
CONCLUSION: The majority of adults in the United Kingdom appear to be exposed to DON, and on the basis of the urinary levels, we estimate that some individuals may exceed the European Union (EU) recommended maximum tolerable daily intake of 1,000 ng DON/kg (bw). This exposure biomarker will be a valuable toot for biomonitoring as part of surveillance strategies and in etiologic studies of DON and human disease risk.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.
Resumo:
Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of <1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo.