996 resultados para Christine Whittington
Resumo:
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two singlecopy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.
Resumo:
A significant proportion of human cancers overexpress DNA polymerase beta (Pol beta), the major DNA polymerase involved in base excision repair. The underlying mechanism and biological consequences of overexpression of this protein are unknown. We examined whether Pol beta, expressed at levels found in tumor cells, is involved in the repair of DNA damage induced by oxaliplatin treatment and whether the expression status of this protein alters the sensitivity of cells to oxaliplatin. DNA damage induced by oxaliplatin treatment of HCT116 and HT29 colon cancer cells was observed to be associated with the stabilization of Pol beta protein on chromatin. In comparison with HCT116 colon cancer cells, isogenic oxaliplatin-resistant (HCT-OR) cells were found to have higher constitutive levels of Pol beta protein, faster in vitro repair of a DNA substrate containing a single nucleotide gap and faster repair of 1,2-GG oxaliplatin adduct levels in cells. In HCT-OR cells, small interfering RNA knockdown of Pol beta delayed the repair of oxaliplatin-induced DNA damage. In a different model system, Pol beta-deficient fibroblasts were less able to repair 1,2-GG oxaliplatin adducts and were hypersensitive to oxaliplatin treatment compared with isogenic Pol beta-expressing cells. Consistent with previous studies, Pol beta-deficient mouse fibroblasts were not hypersensitive to cisplatin treatment. These data provide the first link between oxaliplatin sensitivity and DNA repair involving Pol beta. They demonstrate that Pol beta modulates the sensitivity of cells to oxaliplatin treatment. Oncogene (2010) 29, 463-468; doi:10.1038/onc.2009.327; published online 19 October 2009
Resumo:
Mycobacterium avium subsp. paratuberculosis causes paratuberculosis (Johne's disease) in ruminants in most countries. Historical data suggest substantial differences in culturability of M. avium subsp. paratuberculosis isolates from small ruminants and cattle; however, a systematic comparison of culture media and isolates from different countries and hosts has not been undertaken. Here, 35 field isolates from the United States, Spain, Northern Ireland, and Australia were propagated in Bactec 12B medium and Middlebrook 7H10 agar, genomically characterized, and subcultured to Lowenstein-Jensen (LJ), Herrold's egg yolk (HEY), modified Middlebrook 7H10, Middlebrook 7H11, and Watson-Reid (WR) agars, all with and without mycobactin J and some with sodium pyruvate. Fourteen genotypes of M. avium subsp. paratuberculosis were represented as determined by BstEII IS900 and IS1311 restriction fragment length polymorphism analysis. There was no correlation between genotype and overall culturability, although most S strains tended to grow poorly on HEY agar. Pyruvate was inhibitory to some isolates. All strains grew on modified Middlebrook 7H10 agar but more slowly and less prolifically on LJ agar. Mycobactin J was required for growth on all media except 7H11 agar, but growth was improved by the addition of mycobactin J to 7H11 agar. WR agar supported the growth of few isolates. The differences in growth of M. avium subsp. paratuberculosis that have historically been reported in diverse settings have been strongly influenced by the type of culture medium used. When an optimal culture medium, such as modified Middlebrook 7H10 agar, is used, very little difference between the growth phenotypes of diverse strains of M. avium subsp. paratuberculosis was observed. This optimal medium is recommended to remove bias in the isolation and cultivation of M. avium subsp. paratuberculosis.
Resumo:
Objective. The authors examined bidirectional relations between youth exposure to sectarian and nonsectarian antisocial behavior and mothers' efforts to control youths' exposure to community violence in Belfast, Northern Ireland. Design. Mother-child dyads (N = 773) were interviewed in their homes twice over 2 years regarding youths' exposure to sectarian and nonsectarian community antisocial behavior and mothers' use of control strategies, including behavioral and psychological control. Results. Youths' exposure to nonsectarian antisocial behavior was related to increases in mothers' use of behavioral and psychological control strategies over time, controlling for earlier levels of these constructs. Reflecting bidirectional relations, mothers' behavioral control strategies were associated with youths' reduced exposure to nonsectarian and sectarian antisocial behavior over time, whereas psychological control was not related to reduced exposure. Conclusion. Only nonsectarian community violence was associated longitudinally with mothers' increased use of control strategies, and only behavioral control strategies were effective in reducing youths' exposure to community antisocial behavior, including sectarian and nonsectarian antisocial behavior.
Resumo:
Red algae (Rhodophyta) are an ancient group with unusual morphological, biochemical, and life-history features including a complete absence of flagella. Although the red algae present many opportunities for studying speciation, this has rarely been explicitly addressed. Here, we examine an aspect of paternal gene flow by determining fertilization success of female Neosiphonia harveyi (Ceramiales), which retains a morphological record of all successful and unsuccessful female gametes. High fertilization rates were observed except when there were no males at all within the tidepool, or in a submerged marina environment. Small numbers of reproductive males were able to saturate fertilization rates, suggesting that limited availability of sperm may be less significant in red algae than previously thought. In another member of the Ceramiales, Antithamnion, relatively large chromosomes permit karyological identification of polyploids. The Western Pacific species Antithamnion sparsum is closely related to the diploid species Antithamnion defectum, known only from the Eastern Pacific, and appears to have evolved from it. Molecular evidence suggests that A. sparsum is an autopolyploid, and that the European species known as Antithamnion densum is divergent from the A. sparsum/defectum complex.
Resumo:
Fisheries can have profound effects on epifaunal community function and structure. We analysed the results from five dive surveys (1975–1976, 1980, 1983, 2003 and 2007), taken in a Special Area of Conservation, Strangford Lough, Northern Ireland before and after a ten year period of increased trawling activity between 1985 and 1995. There were no detectable differences in the species richness or taxonomic distinctiveness before (1975–1983) and after (2003–2007) this period. However, there was a shift in the epifaunal assemblage between the surveys in 1975–1983 and 2003–2007. In general, the slow-moving, or sessile, erect, filterfeeders were replaced by highly mobile, swimming, scavengers and predators. There were declines in the frequency of the fished bivalve Aequipecten opercularis and the non-fished bivalves Modiolus modiolus and Chlamys varia and some erect sessile invertebrates between the surveys in 1975–1983 and 2003–2007. In contrast, there were increases in the frequency of the fished and reseeded bivalves Pecten maximus and Ostrea edulis, the fished crabs Cancer pagurus and Necora puber and the non-fished sea stars Asterias rubens, Crossaster papposus and Henricia oculata between the surveys in 1975–1983 and 2003–2007. We suggest that these shifts could be directly and indirectly attributed to the long-termimpacts of trawl fishing gear, although increases in the supply of discarded bait and influxes of sediment may also have contributed to changes in the frequency of some taxa. These results suggest that despite their limitations, historical surveys and repeat sampling over long periods can help to elucidate the inferred patterns in the epifaunal community. The use of commercial fishing gear was banned from two areas in Strangford Lough in 2011, making it a model ecosystem for assessing the long-term recovery of the epifaunal community from the impacts of mobile and pot fishing gear.
Resumo:
The cosmopolitan genus Ceramium (Ceramiaceae, Rhodophyta) is a large and systematically complex group. The taxonomy of this genus remains in a chaotic state due to the high degree of morphological variation. Culture studies, suggesting a strong influence of environment on phenotype, and the use of molecular tools have recently questioned the validity of morphological features used in species recognition. Here we compare three Ceramium taxa from Venice lagoon with samples from northwest Europe using the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase gene (rbcL) and the rbcL-rbcS intergenic spacer combined with morphological observations. A strongly banded species, previously identified as member of a poorly understood and misnamed group, the Ceramium diaphanum complex sensu Feldmann-Mazoyer, is probably conspecific with British samples of Ceramium diaphanum sensu Harvey, for which no valid name has been identified up to now. We show that Ceramium polyceras (Kutzing) Zanardini is a valid name for this species. A fully corticated Ceramium species morphologically resembling C. secundatum differs at the species level from Atlantic C. secundatum; a valid name for this entity is Ceramium derbesii Solier ex Kutzing, described from Mediterranean France. A third species characterized by cortical spines, previously listed as Ceramium ciliation var. robustum (J. Agardh) Mazoyer, is shown to be Ceramium nudiusculum (Kutzing) Rabenhorst, originally described from Venice.
Resumo:
Macroporosity(>100µm) in bone void fillers is a known prerequisite for tissue regeneration, but recent literature has highlighted the added benefit of microporosity(0.5 - 10µm). The aim of this study was to compare the in vitro performances of a novel interconnective microporous hydroxyapatite (HA) derived from red algae to four clinically available macroporous calcium phosphate (CaP) bone void fillers. The use of algae as a starting material for this novel void filler overcomes the issue of sustainability, which overshadows continued use of scleractinian coral in the production of some commercially available materials, namely Pro-OsteonTM and Bio-Coral®. This study investigated the physicochemical properties of each bone voidfiller material using x-ray diffraction, fourier transform infrared spectroscopy, inductive coupled plasma, and nitrogen gas absorption and mercury porosimetry. Biochemical analysis, XTT, picogreen and alkaline phosphatase assays were used to evaluate the biological performances of the five materials. Results showed that algal HA is non-toxic to human foetal osteoblast (hFOB) cells and supports cell proliferation and differentiation. The preliminary in vitro testing of microporous algal-HA suggests that it is comparable to the four clinically approved macroporous bone void fillers tested. The results demonstrate that microporous algal HA has good potential for use in vivo and in new tissue engineered strategies for hard tissue repair.