930 resultados para Cholinesterase inhibitors.
Resumo:
This paper describes a new method for the preparation of 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one 1 and its derivatives 2-5. This set of synthetic compounds exhibited high antitumoral activities regarding in vitro screening against several human tumor cell lines as lung carcinoma NCI-460, melanoma UACC-62, breast MCF-7, colon HT-29, renal 786-O, ovarian OVCAR-03 and ovarian expressing the resistance phenotype for adriamycin NCI-ADR/ RES, prostate PC-3, and leukemia K-562. Compounds were also tested against murine tumor cell line B16F10 melanoma and lymphocytic leukemia L1210 as well as to their effect toward normal macrophages. Specific activity against colon cancer cells HT-29 was observed for all tested compounds and suggests further studies with models of colon cancer. Compounds 1, 2, and 4 showed significant cytotoxic activity with IC(50) values <= 2.3 mu M for all human cancer cell lines. Intraperitoneal acute administration of compound 1 and 2 showed very low toxicity rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Chagas` disease, infection caused by the protozoan Trypanosoma cruzi, is an important, social and medical ailment in the Latin America. This disease is endemic in 21 countries, mostly Latin America countries, with more than 300,000 new cases every year and about 16-18 million infected people. Current therapy is not effective in the chronic phase of the disease. Thus, new and better drugs are urgently needed. In this sense, the in vitro activity of primaquine (PQ) was reported. Based on this, peptide prodrugs of primaquine containing dipeptides - lysine-arginine (LysArg), phenylalanine-alanine (PheAla) and phenylalanine-arginine (PheArg) -- as carriers, were designed to be selectively cleaved by cruzain, a specific cysteine protease of T. cruzi. The prodrugs have shown to be active against tripomastigote forms according to this order: LysArg-PQ> PheAla-PQ> PheArg-PQ. The molecular mechanism of action considered a probable nucleophilic attack of the catalytic residue of cruzain (Cys25) on the respective prodrug amide carbonyl carbon, releasing PQ. In order to test this hypothesis, molecular modeling studies were performed, physicochemical parameters and stereoelectronic features calculated by using the AM1 semi-empirical method suggest that the amide carbonyl carbon is favorable for cleavage, where the LysArg showed the most electronic reactive and sterically disposable, leading to the prodrug release and action. In addition, the docking study indicates the occurrence of specific interactions between prodrugs and the pockets S1 and S2 of cruzain through the dipeptides carriers, being the distance between cruzain Cys25 and the amide carbonyl group related to the biological activity of the prodrugs.
Resumo:
The synthesis of selenium derivatives of naturally occurring chiral molecules is becoming increasingly important in recent years. In this context, we describe herein an easy, straightforward synthetic route for the preparation of a series of chiral seleno-furanosides, starting from the readily available carbohydrate D-xylose. In addition, selected compounds were screened as inhibitors of the delta-aminolevulinate dehyclratase (delta-ALA-D) enzyme. Diselenide 4 was found to reduce significantly the enzymatic activity, while seleno-furanoside la increased delta-ALA-D activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Nitrofurazone (NF) and its derivative, hydroxymethylnitrofurazone (NFOH), have presented antichagasic activity. NFOH has higher activity and lower mutagenicity. The aim of this work was to assess whether NF and its derivative NFOH would also be inhibitors of cruzain, besides their trypanothione reductase inhibitory activity. In vitro cruzain inhibition tests were performed for both compounds, and the 50% inhibitory concentration (IC(50)) for NF and NFOH presented values of 22.83 +/- 1.2 mu M and 10.55 +/- 0.81 mu M, respectively. AM1 semi-empirical molecular modeling studies were performed to understand the activity of the compounds, corroborating the observed cruzain inhibitory activity.
Resumo:
This study describes an accurate, sensitive, and specific chromatographic method for the simultaneous quantitative determination of lamivudine and zidovudine in human blood plasma, using stavudine as an internal standard. The chromatographic separation was performed using a C8 column (150 x 4.6 mm, 5 mu m), and ultraviolet absorbency detection at 270 nm with gradient elution. Two mobile phases were used. Phase A contained 10 mM potassium phosphate and 3% acetonitrile, whereas Phase B contained methanol. A linear gradient was used with a variability of A-B phase proportion from 98-2% to 72-28%, respectively. The drug extraction was performed with two 4 mL aliquots of ethyl acetate.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. one hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p < 0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p < 0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p = 0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4 +/- 12.4%) and apolipoprotein B (apoB) (17.0 +/- 31.3%) when compared with the higher quartile (>0.085: LDL-c = 40.3 +/- 14.3%; apoB = 32.5 +/- 10.7%; p < 0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism. and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This report focuses on the effects of cholesterol on the expression and function of the ATP-binding cassette (ABCB1, ABCG2 and ABCC2) and solute-linked carrier (SLCO1B1 and SLCO2B1) drug transporters with a particular focus on the potential impact of cholesterol on lipid-lowering drug disposition. Statins are the most active agents in the treatment of hypercholesterolemia. However, considerable interindividual variation exists in the response to statin therapy. Therefore, it would be huge progress if factors were identified that reliably differentiate between responders and nonresponders. Many studies have suggested that plasma lipid concentrations can affect drug disposition of compounds, such as ciclosporin and amphotericin B. Both compounds are able to affect the expression and function of ABC transporters. Although still speculative, these effects might be owing to the regulation of drug transporters by plasma cholesterol levels. Studies with normo- and hyper-cholesterolemic individuals, before and after atorvastatin treatment, have demonstrated that plasma cholesterol levels are correlated with drug transporter expression, as well as being related to atorvastatin`s cholesterol-lowering effect. The mechanism influencing the correlation between cholesterol levels and the expression and function of drug transporters remains unclear. Some studies provide strong evidence that nuclear receptors, such as the pregnane X receptor and the constitutive androstane receptor, mediate this effect. In the near future, pharmacogenomic studies with individuals in a pathological state should be performed in order to identify whether high plasma cholesterol levels might be a factor contributing to interindividual oral drug bioavailability.
Resumo:
We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extramitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extramitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.
Resumo:
Trypanosoma cruzi is the etiological agent of Chagas` disease, a pathogenesis that affects millions of people in Latin America. Here, we report the crystal structure of dihydroorotate dehydrogenase (DHODH) from T cruzi strain Y solved at 2.2 angstrom resolution. DHODH is a flavin mononucleotide containing enzyme, which catalyses the oxidation Of L-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. Genetic studies have shown that DHODH is essential for T cruzi survival, validating the idea that this enzyme can be considered an attractive target for the development of antichagasic drugs. In our work, a detailed analysis of T cruzi DHODH crystal structure has allowed us to suggest potential sites to be further exploited for the design of highly specific inhibitors through the technology of structure-based drug design. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010
Resumo:
Balloon catheter injury results in hyper-reactivity to phenylephrine in contralateral carotids. Decreased nitric oxide (NO) modulation and/or increased intracellular calcium concentration triggers vascular smooth muscle contraction. Therefore, this study explores the participation of NO signaling pathway and calcium mobilization on hyper-reactivity to phenylephrine in contralateral carotids. Concentration-response curves for calcium (CaCl(2)) and phenylephrine were obtained in control and contralateral carotids four days after balloon injury, in the presence and absence of the inhibitors (L-NAME, L-NNA, 1400W, 7-NI, Oxyhemoglobin, ODQ or Tiron). Confocal microscopy using Fluo-3AM or DHE was performed to detect the intracellular levels of calcium and reactive oxygen species, respectively. The modulation of NO on phenylephrine-induced contraction was absent in the contralateral carotid. Phenylephrine-induced intracellular calcium mobilization was not altered in contralateral carotids. However, extracellular calcium mobilization by phenylephrine was reduced in the contralateral carotid compared to control arteries, and this result was confirmed by confocal microscopy. L-NAME increased phenylephrine-induced extracellular calcium mobilization in the contralateral carotid to the control levels. Results obtained with L-NNA, 1400W, 7-NI, OxyHb, ODQ or Tiron showed that this response was mediated by products from endothelial NOS (eNOS) different from NO and without soluble guanylate cyclase activation, but it involved superoxide anions. Furthermore. Tiron or L-NNA reduced the levels of reactive oxygen species in contralateral carotids. Data suggest that balloon catheter injury promoted eNOS uncoupling in contralateral carotids, which generates superoxide rather than NO, and reduces phenylephrine-induced extracellular calcium mobilization, despite the hyper-reactivity to phenylephrine in contralateral carotids. (C) 2010 Elsevier B.V. All rights reserved.