957 resultados para Chiral stationary phases, Chemical force spectrometry, Chemical force titration, chiral selectivity, XPS, AFM


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Results of geological studies at the submarine Vityaz Ridge carried out during cruises 37 and 41 of R/V Akademik Lavrent'ev in 2005 and 2006 are reported. The studied area is located at an near-island trench of the slope in the central part of the Kuril Island arc. Morphologically it consists of two parts: an inner volcanic arc represented by the Great Kuril Range and an outer arc corresponding to the submarine Vityaz Ridge. Diverse rocks composing the basement and the sedimentary cover of the ridge were recovered by dredging. Based on K-Ar dating and geochemistry, volcanics were divided into Paleocene, Eocene, late Oligocene, and Pliocene-Pleistocene complexes. Each of the complexes reflects a tectonomagmatic stage in the ridge evolution. Geochemical and isotope data on the volcanics indicate contribution of ancient crustal material in the magma source and, correspondingly, formation of this structure on the continental basement. Two-stage model ages (TDM2) vary in a wide range from zero values in mafic rocks to 0.77 Ga in felsic varieties, pointing to presence of Precambrian protolith in the source of the felsic rocks of the Vityaz Ridge. The Pliocene-Pleistocene volcanics are classed with tholeiitic, calc-alkaline, and subalkaline series, which differ in alkali contents and REE fractionation. Values of (La/Sm)_n and (La/Yb)_n ratios vary from 0.74 and 0.84 in the tholeiitic varieties to 1.19 and 1.44 in the calc-alkaline and 2.32 and 3.73 in the subalkaline rocks. All three varieties occur within the same volcanic edifices and formed during differentiation of magmatic melts that were channeled along fault zones from the mantle source slightly enriched in crustal component.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Samples of crystalline basalt from Site 396 B are all more or less altered, usually in strongly zoned patterns. Evidence has been found for several related or independent alteration stages, including (1) minor localized deuteric (amphibole and mixed clay minerals in miarolitic voids); (2) minor widespread nonoxidizing (pyrite on walls of vugs and cracks); (3) localized diffusion-controlled rug filling ("glauconite" in black halos); (4) pervasive low level oxidizing (transformation of titanomagnetite to cation-deficient titanomaghemite); (5) localized diffusion-controlled strongly oxidizing (breakdown of olivine and titanomaghemite in brown zones). Plagioclase and pyroxene are essentially unaltered. Detailed analyses of gray and brown zones in pillow basalts show that low temperature oxidation has proceeded in a step-wise fashion, with the relative stabilities of the igneous minerals controlling the steps. Secondary minerals that crystallized from pore fluids on to the walls of vugs may or may not be related to local alteration of primary phases. During the most intense stage of alteration, brown oxidation zones grew into basalt fragments behind diffusion controlled fronts. The specific reactions and products of this stage differ among the lithologic units at the site. A model is proposed whereby efficient seawater circulation through the pillow units maintains the pH and the concentrations of Mg2+ and SiO2 dissolved at low levels in pore fluids, so that olivine is replaced by hydrous ferric oxides, and Mg and SiO2 are removed from the system. In the massive basalt unit, circulation is somewhat less effective and Mg and SiO2 are retained in smectites. Deposition of authigenic minerals in the sequence saponite/Fe-Mn oxides/phillipsite/calcite in vugs and cracks may reflect the gradual closing of the systems and probably signals the end of localized oxidation in parts of the core. Mineral compositions indicate that most of these deposits formed from seawater at very low temperature.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Composition of clay minerals in the <0.001 mm size fraction from the uppermost layer of bottom sediments in the northern Amur Bay was determined by X-ray powder diffraction analysis, and enrichment of 33 elements in the <0.001 mm and <0.01 mm size fractions of surface sediments from a number of sites at the marginal filter of the Razdol'naya River were studied by ICP-MS. Fe, U, and chalcophile elements occur in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkaline earth elements. Maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of formation of Fe and Mn (Al) hydroxides. Bottom sediments at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Results of mineralogical and geochemical investigations of post-Middle Jurassic deposits of the Atlantic Ocean are based on materials of the Deep Sea Drilling Project. Comparative characteristics of primary matter for ''black shales'' are given. Exhalative origin of heavy metal accumulation in near-axial sedimentary deeps of the Mid-Atlantic Ridge (23°N) are shown. History of post-Middle Jurassic sedimentation is considered on the base of clay mineral-, clastic component-, trace and rare- chemical element studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

As is less toxic than Hg, Cd, Pb, Se, Zn, and Cu. The As clarke for clays and shales is 10 ppm. Our samples of bottom sediments from Kurshskii Bay were determined to contain from 15 to 26 ppm As and up to 34 ppm As in the vicinity of the Neman River mouth. Elevated As concentrations (50-114 ppm) were detected in four columns of subsurface bottom sediments (at depths of 10-65 cm) from the Vistula Lagoon. Elevated As concentrations (50-180 ppm) were also found in a few surface samples of sand from the Gdansk Deep near oil platform D-6. These sediments are either partly contaminated with anthropogenic As or contain Fe sulfides and glauconite, which can concentrate As and contain its elevated concentrations. The As concentration in columns of bottom sediments from the Gulf of Finland were at the natural background level (throughout the columns) typical of the area (9-34 ppm). We repeatedly detected very high As concentrations (up to 227 ppm As) in politic ooze from Bornholm Deep, in the vicinity of the sunken vessel with chemical weapons. The sources of elevated As concentrations in the Baltic Sea are the following: (1) chemical weapon (CW) material buried in the floor of the Baltic Sea; (2) As-bearing pesticides, agricultural mineral fertilizers, and burned coal and other fuels; (3) kerogen-bearing Ordovician rocks exposed on the bottom; and (4) As-rich Fe sulfides brought to the area together with construction sand and gravel. This mixture was used in paper production and for the construction of hydraulic engineering facilities in the Vistula Lagoon in the early 20th century and later caused the so-called lagoon disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The diagenesis and geochemical evolution of deep-sea sediments are controlled by the interaction between sediments and their associated pore waters. With increasing depth, the pore water of Hole 149 (DSDP) exhibits a strong depletion in Mg and a corresponding enrichment in Ca, while the alkalinity remains relatively constant. Dissolved SiO2 is nearly constant in the upper 100 m of sediment, but is highly enriched in the deepest pore waters. The pore waters exhibit a depletion in K with increasing depth, and O18/O16 pore water ratios also decrease. The sediment section has three zones of sedimentary regimes with increasing depth in the drill hole: an upper 100 m section of detrital clays, a middle section enriched in calc-akalic volcanics which have undergone submarine weathering to a smectite phase, and a lower section of siliceous ooze which still has a diagenetic smectite phase. The quartz-feldspar ratios and O18/O16 composition of the silicate phases are in agreement with these interpretations. The submarine weathering of volcanics to a smectite can account for the observed pore water gradients. Volcanics release Ca and Mg to the pore waters causing the alkalinity values to increase. Smectite is formed, depletes the pore waters in Mg and O18 and causes the alkalinity to decrease. The net reaction allows for the observed relationship between pore water Ca and Mg gradients with little net change in alkalinity. Given the abundance of volcanics in many deep-sea sediments, especially in lower sections which often form near ridge crests, the submarine formation of smectite may be an additional oceanic Mg sink which has not yet been fully considered.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Petrographic description as well as data on chemical composition and K-Ar age of basalts from the floor of the Indian Ocean are reported in the paper.