988 resultados para Chaucer, Geoffrey, -1400.
Resumo:
IEECAS SKLLQG
Resumo:
A phenol-degrading. microorganism, Alcaligenes faecalis, was used to study the substrate interactions during cell growth on phenol and m-cresol dual substrates. Both phenol and m-cresol could be utilized by the bacteria as,the sole carbon and energy sources. When cells grew on the mixture of phenol and m-cresol, strong substrate interactions were observed. m-Cresol inhibited the degradation of phenol, on the other hand, phenol also inhibited the utilization of m-cresol, the overall cell growth rate was the co-action of phenol and m-cresol. In addition, the cell growth and substrate degradation kinetics of phenol, m-cresol as single and mixed substrates for A. faecalis in batch cultures were also investigated over a wide range of initial phenol concentrations (10-1400 mg L-1) and initial m-cresol concentrations (5-200 mg L-1). The single-substrate kinetics was described well using the Haldane-type kinetic models, with model constants of it mu(m1) = 0.15 h(-1), K-S1 = 2.22 mg L-1 and K-i1 = 245.37 mg L-1 for cell growth on phenol and mu(m2) = 0.0782 h(-1), K-S2 = 1.30 mg L-1 and K-i2 = 71.77 mgL(-1), K-i2' = 5480 (mg L-1)(2) for cell growth on m-cresol. Proposed cell growth kinetic model was used to characterize the substrates interactions in the dual substrates system, the obtained parameters representing interactions between phenol and m-cresol were, K = 1.8 x 10(-6), M = 5.5 x 10(-5), Q = 6.7 x 10(-4). The results received in the experiments demonstrated that these models adequately described the dynamic behaviors of phenol and m-cresol as single and mixed substrates by the strain of A. faecalis.
Resumo:
应用梯度格局法在长白山北坡海拔700m-2600m的坡面上每100 m海拔设置一样地,共计20块样地,通过对同一群落各样方间的相异性测定,对各海拔植物群落的复杂性进行了分析。结果表明,以主林层乔木种的二元数据计算的结果,除亚高山岳桦林外,其它各海拔群落的样方间均表现出较高的相异性,特别是低海拔的阔叶红松林平均相异系数达0.74,明显高于其它植被类型;暗针叶林各群落间差异不大,相对而言1400 m群落样方间的相异性略高于其它群落,表现出过渡性群落树种组成的复杂性;岳桦林树种组成简单,样[(\267\275\274\344\322\262\261\355\317\326\263\366\275\317\270\337\265\304\\317\340\313\306\320\324\241\243)-0.1(\322\324\271\340\304\276\326\326\265\304\266\376\324\252\312\375\276\335\\274\306\313\343\265\304\310\272)]落内的相异性,虽低海拔的阔叶红松林总体上高于其它群落,但差异趋势并不像乔木种那么明显。以各草本植物与所有植物种的二元数据计算的各海拔群落内样方间的相异性,表现出非常相近的趋势,群落内样方间草本植物及所有植物种均以阔叶红松林及高山冻原差异最大,暗针叶林基本稳定于比较相近的水平。图3表1参8。
Resumo:
为了揭示黄土高原南部地区不同质地类型土壤剖面坚实度的变化及其与土壤含水率的定量关系,以黄墡土、土娄土、裸露在地表的粘化层耕作剖面为研究对象,定位观测其0~45 cm土壤坚实度与含水率的变化。结果表明,黄墡土、土娄土、裸露在地表粘化层耕作剖面的犁底层平均坚实度均大于耕层,犁底层平均坚实度较耕层分别高194.8%,87.3%,10.4%;剖面土壤质地越粘其平均坚实度越大;土壤坚实度与含水率呈负相关关系;土壤坚实度变化速率为0时,以上3种土壤剖面临界含水率分别为0.1712,0.1757,0.1835;质地不同的土壤剖面坚实度时空变化特征有差异,其中黄墡土剖面0~20 cm土层土壤坚实度为350~500 kPa,受土壤含水率变化的影响较小;20~30 cm土层土壤的坚实度为500~1400 kPa,不易受外界环境影响;30 cm以下土层土壤坚实度为700~1600 kPa,受土壤含水率变化影响较大。土娄土剖面0~40 cm土层土壤坚实度为600~1200 kPa,受含水率变化影响较大;40 cm以下土层土壤坚实度稳定在1 800 kPa左右。粘化层剖面0~15 cm土层土壤坚实度在2000 kPa左右,受环境影响较...
Resumo:
土壤活性有机碳是土壤中活跃的化学组分,能显著影响土壤化学物质的溶解、吸附、解吸、吸收、迁移乃至生物毒性等行为,近年来土壤活性有机碳已成为土壤、环境和生态科学领域所关注的焦点和研究的热点。本文从土壤活性有机碳的来源、组成、含量、影响因素以及环境意义等方面做了简要的论述。一般认为,土壤活性有机碳来源于植物凋落物的分解、根系分泌物、土壤有机质的水解、土壤微生物本身及其代谢产物,因为来源的不同土壤活性有机碳含量也不同;影响土壤活性有机碳的因素有很多,研究表明,土壤活性有机碳随季节和湿度的变化呈现十分强烈的变异趋势;土地利用方式改变对土壤活性有机碳的影响在不同的研究中有不同的结果;土地管理措施如耕作、施有机肥和化肥、改变土壤pH值等对土壤活性有机碳也有很大的影响。土壤活性有机碳的生态环境效应主要表现在它对调节土壤养分流有很大影响,与土壤内在的生产力高度相关;它作为重金属的有机配体,对土壤溶液中的微量重金属的可移动性和迁移过程以及金属复合物的形成过程有着重要作用;它的存在影响农药在土壤中的截留、增加农药的水溶性,并影响农药在土壤中的运动;它对温室气体的排放、水体富营养化、岩石圈溶蚀都有很重要的作用。同时指出了未来的研究方向。
Resumo:
3年生白桦同时接受3种外源糖溶液(蔗糖、果糖、葡萄糖)和3种高浓度CO2(700、1400、2100μL L-1CO2)处理。处理1个月后,测定了叶片的总糖、蔗糖、果糖和蛋白质含量。结果表明:在700μL L-1和1400μL L-1 CO2下,外源糖溶液增加了叶片的可溶性糖和蛋白质含量,其中外源蔗糖的效果最好;外源糖溶液与2100μL L-1CO2结合,会抑制叶片积累总糖和蛋白质;在700μL L-1和1400μL L-1CO2下,喷施葡萄糖、果糖的叶片在蛋白质含量上没有明显差别;;同700、1400μL L-1CO2相比,除喷施果糖植株外,2100μL L-1CO2明显增加了叶片的总糖、蔗糖、果糖和蛋白质含量;;在喷施同种外源糖溶液的情况下,叶片的糖含量与CO2浓度呈正相关性。图6参7。
Resumo:
<正> 文冠果属无患子科文冠果属植物,别名文官果、文光果、木瓜等,是我国特有的一种优良木本食用油料树种。其适应性极强,根深、耐旱、耐寒、耐盐碱、耐脊薄,且综合价值高。分布于我国13个省(市、自治区)。1、文冠果的食用价值文冠果的果实含有高油脂及多种生物活性成分:
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.
Resumo:
Single phase WxAl(50)Mo(50)-X (X=40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 degrees C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 degrees C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.
Resumo:
The phase stability of lanthanum cerium oxide (La2Ce2O7), which is stable up to 1400 degrees C, and the thermal expansion coefficient of La2Ce2O7 doped with Ta2O5 or WO3 were studied. The thermal expansion coefficient of La2Ce2O7 below 400 degrees C was increased by adding more CeO2 or doping with either Ta2O5 or WO3.
Resumo:
Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy powder as negative electrode material of Ni-MH battery have been investigated at different temperatures. The calculated results show that the apparent activation enthalpy of the charge-transfer reaction is 43.89 kJ mol(-1), and the activation energy of hydrogen diffusion is 21.03 kJ mol(-1). The exchange current density and the diffusion coefficient of hydrogen in the bulky electrode increase with increasing temperature, indicating that increasing temperature is beneficial to charge-transfer reaction and hydrogen diffusion. As a result, the maximum discharge capacity, activation property and high-rate dischargeability are greatly improved with increasing temperature. However, the charge retention and the cycling stability degrade with the increase of the temperature.