949 resultados para Cement slurries
Resumo:
A modified lattice model using finite element method has been developed to study the mode-I fracture analysis of heterogeneous materials like concrete. In this model, the truss members always join at points where aggregates are located which are modeled as plane stress triangular elements. The truss members are given the properties of cement mortar matrix randomly, so as to represent the randomness of strength in concrete. It is widely accepted that the fracture of concrete structures should not be based on strength criterion alone, but should be coupled with energy criterion. Here, by incorporating the strain softening through a parameter ‘α’, the energy concept is introduced. The softening branch of load-displacement curves was successfully obtained. From the sensitivity study, it was observed that the maximum load of a beam is most sensitive to the tensile strength of mortar. It is seen that by varying the values of properties of mortar according to a normal random distribution, better results can be obtained for load-displacement diagram.
Resumo:
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents a rational approach to model the behavior of bonded soils within the frame work of hardening plasticity. The approach is based on the premise that the resistance of bonded materials is a superposition of the two components of cement bond strength and soil frictional strength and that the deformation of the soil is associated with the frictional component of stresses just as in the case of a remoulded soil, the bonds offering additional resistance at any given strain level. This concept is similar to two stiffnesses acting in parallel for the same strain response. The proposed model considers the constitutive laws separately for the two components (bond and frictional) and adds the two to get the overall response. The unbonded soil component is described by the well known 'modified Cam clay' model. The response of the bond component is also described by a strain softening elasto-plastic model, considering the behavior to be elastic up to the yield surface and elasto-plastic beyond yield surface. To illustrate the capability of the proposed, model some laboratory test results of both compression and-extension shear tests are predicted. Despite the model being simple, several typical features of the behavior of bonded materials are well reproduced. The model parameters are well defined and easily determinable.
Resumo:
The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Phosphogypsum is added to building materials to accelerate fly ash pozzolanic reaction and contributes to early strength development of concrete. The release of unacceptable fluoride levels by phoshogypsum on contact with water is a major impediment in its usage to manufacture building products because excess fluoride consumption causes dental and skeletal fluorosis. This paper examines the efficacy of fly ash pozzolanic reactions in controlling fluoride release by phosphogypsum. Fly ash (FA), sand (S), lime (L), and phosphogypsum (G) (FA-S-L-G) slurries are cured for various periods, and the fluoride released by the mix is monitored as a function of time. A substantial reduction in fluoride release was observed and is attributed to entrapment of phosphogypsum particles in a cementious matrix formed by fly ash-lime pozzolanic reactions coupled with consumption of fluoride in formation of insoluble compounds. The compressive strength developed by compacted FA-S-L-G specimens with time was observed to be a three-stage process; maximum strength mobilization occurred during 14 and 28days of curing at room temperature. Exposure of the compacted FA-S-L-G specimens to acidic and alkaline environments for 9 days did not impact their compressive strengths. (C) 2013 American Society of Civil Engineers.
Resumo:
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Bentonite in slurry walls needs to be amended with organo-clay to control the migration of organic contaminants. Consolidation behaviour of the slurry is important because it will reduce the total effective stress owing to mobilisation of frictional force between the side wall of the trench and the slurry. Compressibility of the slurry of bentonite is expected to undergo significant changes owing to amendment with organo-clay and according to the nature of the fluid. Standard one-dimensional consolidation tests were carried out on slurries of bentonite, organo-clay and their mixtures by remoulding them to their respective liquid limit consistency with water as well as fluids of low polarity, such as carbon tetrachloride, and inundating with different fluids. Organo-clay and its mixture with bentonite when moulded with water exhibit lower compressibility than bentonite in any pore fluid, but their compressibility increases when moulded with carbon tetrachloride and inundated with the same fluid. These changes in the compressibility of bentonite amended with organo-clay are explained by particle rearrangements, changes in the development of the diffuse double layer and contribution from the water adsorbed in the inter-lamellar space of the clay.
Resumo:
Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.
Resumo:
Geopolymers are an alternative binder to portland cement in the manufacture of mortars and concrete, as its three-dimensional aluminosilicate network imparts excellent mechanical properties. Use of geopolymers in place of ordinary portland cement is favored owing to the possible energy and carbon dioxide savings. River sand is another construction industry material that needs development of a sustainable alternate in India. Geopolymerization of fly ash amorphous silica mixtures is employed to produce fine aggregates as a possible replacement to river sand. Geopolymerization of fly ash amorphous silica mixtures in 10M NaOH solution at 100 degrees C for 7days produced fine aggregates termed fly ash geopolymer sand (FAPS)] that had comparable grain size distribution, specific gravity, and improved frictional resistance with river sand. The FAPS particles exhibited more alkaline pH (12.5) and higher total dissolved solids (TDS) concentration (TDS=747 mg/L) in comparison to the river sand specimen (pH=7.9 and TDS=32.5 mg/L). However, when used as fine aggregate in mortar, FAPS-mortar specimens develop similar pH, lower TDS, similar compressive strength, and modulus in relation to river sand-mortar specimens. The experimental results suggest that FAPS particles have the potential to replace river sand in the manufacture of mortar and concrete.
Resumo:
A green colored nano-pigment Y2BaCuO5 with impressive near infra-red (NIR) reflectance (61% at 1100 nm) was synthesized by a nano-emulsion method. The developed nano-crystalline powders were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis-NIR diffuse reflectance spectroscopy and CIE-L*a*b* 1976 color scales. The XRD and Rietveld analyses of the designed pigment powders reveal the orthorhombic crystal structure for Y2BaCuO5, where yttrium is coordinated by seven oxygen atoms with the local symmetry of a distorted trigonal prism, barium is coordinated by eleven oxygen atoms, and the coordination polyhedron of copper is a distorted square pyramid CuO5]. The UV-vis spectrum of the nano-pigment exhibits an intense d-d transition associated with CuO5 chromophore between 2.1 and 2.5 eV in the visible domain. Therefore, a green color has been displayed by the developed nano-pigment. The potential utility of the nano-pigments as ``Cool Pigments'' was demonstrated by coating on to a building roofing material like cement slab and PVC coatings. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.
Resumo:
Stabilised soil products such as stabilised soil blocks, rammed earth and stabilised adobe are being used for building construction since the last 6-7 decades. Major advantages of stabilised soil products include low embodied carbon, use of local materials, decentralized production, and easy to adjust the strength, texture, size and shape. Portland cement and lime represent the most commonly used stabilisers for stabilised soil products. The mechanism of strength development in cement and lime stabilised soils is distinctly different. The paper presents results of scientific investigations pertaining to the status of clay minerals in the 28 day cured cement and lime stabilised soil compacts. XRD, SEM imaging, grain size distribution and Atterberg's limits of the ground stabilised soil products and the natural soil were determined. Results reveal that clay minerals can be retrieved from cement stabilised soil products, whereas in lime stabilised soil products clay minerals get consumed in the lime-clay reactions and negligible percentage of clay minerals are left in the stabilised soil compacts. The results of the present investigation clearly demonstrate that cement stabilisation is superior to lime stabilisation in retrieving the clay minerals from the stabilised soil compacts. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.
Resumo:
We present here observations on diurnal and seasonal variation of mixing ratio and delta C-13 of air CO2, from an urban station-Bangalore (BLR), India, monitored between October 2008 and December 2011. On a diurnal scale, higher mixing ratio with depleted delta C-13 of air CO2 was found for the samples collected during early morning compared to the samples collected during late afternoon. On a seasonal scale, mixing ratio was found to be higher for dry summer months (April-May) and lower for southwest monsoon months (June-July). The maximum enrichment in delta C-13 of air CO2 (-8.04 +/- 0.02aEuro degrees) was seen in October, then delta C-13 started depleting and maximum depletion (-9.31 +/- 0.07aEuro degrees) was observed during dry summer months. Immediately after that an increasing trend in delta C-13 was monitored coincidental with the advancement of southwest monsoon months and maximum enrichment was seen again in October. Although a similar pattern in seasonal variation was observed for the three consecutive years, the dry summer months of 2011 captured distinctly lower amplitude in both the mixing ratio and delta C-13 of air CO2 compared to the dry summer months of 2009 and 2010. This was explained with reduced biomass burning and increased productivity associated with prominent La Nina condition. While compared with the observations from the nearest coastal and open ocean stations-Cabo de Rama (CRI) and Seychelles (SEY), BLR being located within an urban region captured higher amplitude of seasonal variation. The average delta C-13 value of the end member source CO2 was identified based on both diurnal and seasonal scale variation. The delta C-13 value of source CO2 (-24.9 +/- 3aEuro degrees) determined based on diurnal variation was found to differ drastically from the source value (-14.6 +/- 0.7aEuro degrees) identified based on seasonal scale variation. The source CO2 identified based on diurnal variation incorporated both early morning and late afternoon sample; whereas, the source CO2 identified based on seasonal variation included only afternoon samples. Thus, it is evident from the study that sampling timing is one of the important factors while characterizing the composition of end member source CO2 for a particular station. The difference in delta C-13 value of source CO2 obtained based on both diurnal and seasonal variation might be due to possible contribution from cement industry along with fossil fuel / biomass burning as predominant sources for the station along with differential meteorological conditions prevailed.
Resumo:
Unreinforced masonry (URM) structures that are in need of repair and rehabilitation constitute a significant portion of building stock worldwide. The successful application of fiber-reinforced polymers (FRP) for repair and retrofitting of reinforced-concrete (RC) structures has opened new avenues for strengthening URM structures with FRP materials. The present study analyzes the behavior of FRP-confined masonry prisms under monotonic axial compression. Masonry comprising of burnt clay bricks and cement-sand mortar (generally adopted in the Indian subcontinent) having E-b/E-m ratio less than one is employed in the study. The parameters considered in the study are, (1) masonry bonding pattern, (2) inclination of loading axis to the bed joint, (3) type of FRP (carbon FRP or glass FRP), and (4) grade of FRP fabric. The performance of FRP-confined masonry prisms is compared with unconfined masonry prisms in terms of compressive strength, modulus of elasticity and stress-strain response. The results showed an enhancement in compressive strength, modulus of elasticity, strain at peak stress, and ultimate strain for FRP-confined masonry prisms. The FRP confinement of masonry resulted in reducing the influence of the inclination of the loading axis to the bed joint on the compressive strength and failure pattern. Various analytical models available in the literature for the prediction of compressive strength of FRP-confined masonry are assessed. New coefficients are generated for the analytical model by appending experimental results of the current study with data available in the literature. (C) 2014 American Society of Civil Engineers.