932 resultados para Cellular dehydration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca2+, neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α1 pore-forming subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼305 bp corresponding to the predicted size of the α2δ3 subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α2δ3 immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons (hexane, cyclohexane, isooctane, and toluene) that are representative of the hydrocarbons present in ordinary gasoline have been tested. Each of these hydrocarbons was tested separately in experiments under conditions of constant feed rate and variable reboiler heat duty. The experimentally obtained results are compared with results calculated by a simulator. Finally, the proposed and traditional ethanol dehydration processes are compared to ascertain the advantages of the former over the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various hydrocarbons (n-hexane, cyclohexane, toluene, isooctane) and mixtures of them (binary, ternary or quaternary), as well as two different types of industrially produced naphtha (one obtained by direct distillation and the other from a catalytic cracking process), have been tested as candidate entrainers to dehydrate ethanol. The tests were carried out in an azeotropic distillation column on a semi pilot plant. The results show that it is possible to dehydrate bioethanol using naphtha as entrainer, obtaining as a result a fuel blend with negligible water content and ready for immediate use in motor vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of [PdCl2(COD)] (COD = 1,5-cyclooctadiene) with 1 and 2 equivalents of 2-(diphenylphosphino)benzaldehyde oxime in dichloromethane at room temperature led to the selective formation of [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH[double bond, length as m-dash]NOH}] (1) and [Pd{κ2-(P,N)-2-Ph2PC6H4CH[double bond, length as m-dash]NOH}2][Cl]2 (2), respectively, which represent the first examples of Pd(II) complexes containing a phosphino-oxime ligand. These compounds, whose structures were fully confirmed by X-ray diffraction methods, were active in the catalytic rearrangement of aldoximes. In particular, using 5 mol% complex 1, a large variety of aldoximes could be cleanly converted into the corresponding primary amides at 100 °C, employing water as solvent and without the assistance of any cocatalyst. Palladium nanoparticles are the active species in the rearrangement process. In addition, when the same reactions were performed employing acetonitrile as solvent, selective dehydration of the aldoximes to form the respective nitriles was observed. For comparative purposes, the catalytic behaviour of an oxime-derived palladacyclic complex has also been briefly evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as good thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering material insulation inside the cavities. The time-temperature history and the residual cross-section of wooden slabs were numerically measured and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring plates to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behavior with accurately. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behavior of the wooden slabs will be compared considering material insulation inside the cavities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materials like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood burns quite easily and produces a great deal of heat energy. The main disadvantage is the high level of combustion when exposed to fire, where the point at which it catches fire is from 200–400°C. After fire exposure, is need to determine if the charred wooden structures are safe for future use. Design methods require the use of computer modelling to predict the fire exposure and the capacity of structures to resist those action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood structures exposed to fire, because predicts the charring rate as a function of fire exposure. The charring rate calculation of most structural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materials. In this work, the authors present different case studies using numerical models, that will help professionals analysing woods elements and the type of information needed to decide whether the charred structures are adequate or not to use. Different thermal models representing wooden cellular slabs, used in building construction for ceiling or flooring compartments, will be analysed and submitted to different fire scenarios (with the standard fire curve exposure). The same numerical models, considering insulation material inside the wooden cellular slabs, will be tested to compare and determine the fire time resistance and the charring rate calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materiais like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood does bum quite easily md produces a great deal ofheat energy. The main disadvantage is the high levei ofcombustion when exposed to fíre, where the point at which it catches fire is fi-om 200-400°C. After fu-e exposure, is need to determine if the charred wooden stmctures are safe for future use. Design methods require the use ofcomputer modelling to predict the fíre exposure and the capacity ofstructures to resist fhose action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood stmctures exposed to fire, because predicts the charring rate as a fünction offire exposure. The charring rate calculation ofmost stmctural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materiais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical approach with finite element method in order to predict both the behaviour and the performance of the wooden slabs with rectangular perforations under fire exposure. These typical constructions have good sound absorption, thermal insulation and relevant architectonic features, they are used in many civil engineering applications. These slabs are normally installed at lower level in building constructions essentially due to an easy maintenance requisite. Depending on the installation requirement, the perforated wooden slabs could have an additional insulation material inside the cavities. The proposed numerical model could be applied to different design constructive slab solutions. For this purpose a 3D numerical simulation was conducted with particular attention to the wood thermal properties variation with temperature. The numerical results were compared with those obtained experimentally in laboratory, for two wooden slabs. The fire resistance (performance criteria related to the insulation (I) and integrity (E)) was evaluated, as well as the effect of rectangular perforations into the residual cross section of the slab. This study was conducted in accordance with European Standard EN 1365-2 and using a fire resistance furnace which complies the requirements of EN 1363-1 in the experimental test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragmentation and inhibits the peroxisomal-dependent antiviral signalling pathway. Importantly, we demonstrate that peroxisomal fragmentation is not essential for vMIA to specifically inhibit signalling downstream the peroxisomal MAVS. We also show that vMIA interacts with the cytoplasmic chaperone Pex19, suggesting that the virus has developed a strategy to highjack the peroxisomal membrane proteins' transport machinery. Furthermore, we show that vMIA is able to specifically interact with the peroxisomal MAVS. Our results demonstrate that peroxisomes constitute a platform for evasion of the cellular antiviral response and that the human cytomegalovirus has developed a mechanism by which it is able to specifically evade the peroxisomal MAVS-dependent antiviral signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.