911 resultados para Cell surface density
Resumo:
The interaction of diclofenae sodium (SD) with soya phosphatidylcholine (SPC) has been studied with floating Langmuir monolayers and liposomes. SD was either introduced into the subphase of SPC monolayers or co-spread with SPC on an aqueous subphase. In both cases, SD caused the surface pressure isotherm to become more expanded, thus demonstrating the affinity between SD and SPC. The incorporation of SD caused SPC liposomes to have a decreased diameter according to light scattering experiments. When SPC liposomes were injected into an aqueous subphase, their destruction yielding surface-active monomers could be monitored by changes in surface pressure. SD-loaded liposomes displayed a much faster kinetics when the surface density of surface-active monomers was plotted against time, with rate constants increasing significantly with the SD concentration. The kinetic profile can be quantitatively analyzed by plotting In[1 - (Gamma/Gamma(infinity))] versus t(1/2) (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work
Resumo:
The growth hormone receptor (GHR) is the cell surface receptor for growth hormone (GH) and is required for GH to carry out its effects on target tissues. The objectives of the present study were to estimate the allele and genotype frequencies of the GHR/Alu I gene polymorphism located in the regulatory region in beef cattle belonging to different genetic groups and to determine associations between this polymorphism and growth and carcass traits. Genotyping was performed on 384 animals, including 79 Nellore (Zebu), 30 Canchim (5/8 Charolais+3/8 Zebu), 30 Simmental X Nellore crossbred and 245 Angus x Nellore crossbred cattle. Alleles Alu I(+), Alu I(-) and Alu I(N)-null allele-were evidenced for the GHR/Alu I polymorphism and the frequency of the Alu I(N) allele was significantly higher than the frequency of the Alu I(+) and Alu I(-) alleles in all genetic groups. Genotype Alu I(N/N) of the GHRIAlu I predominated in Nellore animals, while the Alu I(N/+) and Alu I(N/-) predominated in the other genetic groups. In the association studies, traits of interest were analyzed using the General Linear Model (GLM) procedure of the SAS program and least squares means of the genotypes were compared by the Tukey test. Significant associations (P < 0.05) were observed between the Alu I(N/N) genotype of the GHRIAlu I polymorphism and lower weight gain and body weight at slaughter, although a confounding between genotypes and genetic groups may have occurred. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Uroplakins, cytokeratins and the apical plasma membrane were studied in the epithelia of mouse urinary tract. In the simple epithelium covering the inner medulla of the renal pelvis, no uroplakins or cytokeratin 20 were detected and cells had microvilli on their apical surface. The epithelium covering the inner band of the outer medulla became pseudostratified, with the upper layer consisting of large cells with stalks connecting them to the basal lamina. Uroplakins and cytokeratin 20 were not expressed in these cells. However, some superficial cells appeared without connections to the basal lamina; these cells expressed uroplakins Ia, Ib, II and III and cytokeratin 20, they contained sparse small uroplakin-positive cytoplasmic vesicles and their apical surface showed both microvilli and ridges. Cytokeratin 20 was seen as dots in the cytoplasm. This epithelium therefore showed partial urothelial differentiation. The epithelium covering the outer band of the outer medulla gradually changed from a two-layered to a three-layered urothelium with typical umbrella cells that contained all four uroplakins. Cytokeratin 20 was organized into a complex network. The epithelium possessed an asymmetric unit membrane at the apical cell surface and fusiform vesicles. Umbrella cells were also observed in the ureter and urinary bladder. In males and females, the urothelium ended in the bladder neck and was continued by a non-keratinized stratified epithelium in the urethra in which no urothelial cell differentiation markers were detected. We thus show here the expression, distribution and organization of specific proteins associated with the various cell types in the urinary tract epithelium.
Resumo:
Background: Interest in folliculogenesis has grown extensively in recent years. Nevertheless, several aspects of follicular activity are still poorly understood. Thus, in vitro culture of ovarian follicles using new substances has been established as a very viable model, enhancing the prospects for a better understanding of follicular activity. Among the family members of the fibroblast growth factor (FGFs), FGF-10 has received recent attention for its ability to regulate the development of ovarian follicles and oocyte maturation. Given the relevance of FGF-10 in the folliculogenesis process, this review aimed to describe the structural features, expression and the main biological effects of FGF-10 on the development of ovarian follicles in mammals.Review: Along this work, it was shown aspects related to structural characterization of FGF-10 and its receptors, as well as FGF-10 expression in different cell types, emphasizing its importance to follicular development. FGF-10 is a paracrine member of the family of FGFs, and is characterized by promoting biological responses via cell surface receptors (FGFRs) of tyrosine kinase-type. of these receptors, FGFR-1, FGFR-2 and FGFR-3 may undergo alternative transcriptional arrangements, enabling the formation of two isoforms (b and c) that have varying degrees of affinity for the various FGFs. Thus, seven FGFR proteins (FGFRs 1b, 1c, 2b, 2c, 3b, 3c and 4) with different binding specificities are generated from the four FGFR genes. The FGFRs transmit intracellular signals after binding with the ligand through the phosphorylation of tyrosine, which activates various transduction patterns in the cytoplasm. The signal transduction of FGF-10 may occur through three main pathways: protein of rat sarcoma (Ras)/MAPK, PLC gamma/Ca(2+) and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), which are involved in the transmission of biological signals, leading to cellular proliferation and differentiation. FGF-10 mRNA expression was detected in the ovarian stroma, oocyte and theca cells of preantral and antral follicles. on the other hand, the expression of mRNA for FGF-10 receptors was found in, granulosa cells, theca cells, cumulus cells and oocytes. Although FGFs are widely distributed in different tissues and cell types, the importance and function of FGFs in the ovary are still poorly documented. FGF-10 has been shown to be an important mediator of mesenchymal and epithelial cell interactions during follicle development, promoting follicular survival, activation and growth. Besides the action on folliculogenesis, FGF-10 was recently identified as a growth factor able to improve oocyte competence. However, in antral follicles, the presence of FGF-10 is associated with increased follicular atresia, which matches its anti-estrogenic action.Discussion: From this review, we can conclude that FGF-10 is an important regulator of female reproduction. This growth factor acts in follicle survival, oocyte maturation, expansion of cumulus cells and proliferation of granulosa/theca cellsthrough direct and/or indirect actions in the control of folliculogenesis. Furthermore, FGF-10 seemed to have different effects throughout the follicular development. However, it is necessary to perform additional studies that may provide a better understanding about the importance of FGF-10 during folicullogenesis.
Resumo:
A proliferação da célula tiroideana normal é regulada por fatores de crescimento estimuladores e inibidores, que atuam através de seus receptores de membrana e, subseqüentemente, através de transdutores citoplasmáticos. Na glândula normal adulta, o equilíbrio de sinais é tal que a proliferação é mínima, enquanto nas neoplasias o crescimento resulta de um distúrbio irreversível desse equilíbrio. Apesar do número de moléculas envolvidas nesse processo ser grande, apenas um pequeno subgrupo parece estar envolvido na tumorigênese tiroideana. Tais proteínas são codificadas pelos genes RAS, RET, NTRK1 e TP53. O transdutor de sinais ras é ativado por mutações em ponto e constitui uma alteração genética precoce nos tumores com histologia folicular. Os genes dos receptores de crescimento RET e NTRK1 são alterados por rearranjos cromossômicos do tipo translocação ou inversão nos carcinomas papilares e por mutações em ponto nos medulares. As alterações do gene TP53, por sua vez, têm sido observadas em carcinomas tiroideanos pobremente diferenciados e na maioria dos indiferenciados, o que sugere sua participação na progressão dessas lesões. O modelo molecular da carcinogênese tiroideana, embora ainda incompleto, pode fornecer instrumentos importantes para o diagnóstico diferencial e para o desenvolvimento de novas técnicas terapêuticas nesse grupo de neoplasias.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. on the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The effects of chronic alcohol ingestion on the secretory epithelium of the seminal vesicle were studied in rats (Rattus norvegicus). Male adult albino Wistar rats were divided into two groups: alcoholic and control. Tips of the seminal vesicle were removed and prepared for light and electron microscopy. Ultrastructural observations on the epithelial cells of the seminal vesicle showed reduced epithelial cell size, decreased apical secretory vacuoles, irregularly shaped nuclei with deep infoldings, increased lipid droplets and dense bodies, a small number of microvilli covering the cell surface, and signs of degeneration. In addition to the hormonal effects, alcohol may act on the secretory epithelium of the seminal vesicle.
Resumo:
Gap junctions are connexin-formed channels that play an important role in intercellular communication in most cell types. In the immune system, specifically in macrophages, the expression of connexins and the establishment of functional gap junctions are still controversial issues. Macrophages express P2X(7) receptors that, once activated by the binding of extracellular ATP, lead to the opening of transmembrane pores permeable to molecules of up to 900 Da. There is evidence suggesting an interplay between gap junctions and P2 receptors in different cell systems. Thus, we used ATP-sensitive and -insensitive J774.G8 macrophage cell lines to investigate this interplay. To study junctional communication in J774-macrophage-like cells, we assessed cell-to-cell communication by microinjecting Lucifer Yellow. Confluent cultures of ATP-sensitive J774 cells (ATP-s cells) are coupled, whereas ATP-insensitive J774 cells (ATP-i cells), derived by overexposing J774 cells to extracellular ATP until they do not display the phenomenon of ATP-induced permeabilization, are essentially uncoupled. Western-blot and reverse-transcription polymerase chain reaction assays revealed that ATP-s and ATP-i cells express connexin43 (Cx43), whereas only ATP-s cells express the P2X(7) receptor. Accordingly, ATP-i cells did not display any detectable ATP-induced current under whole-cell patch-clamp recordings. Using immunofluorescence microscopy, Cx43 reactivity was found at the cell surface and in regions of cell-cell contact of ATP-s cells, whereas, in ATP-i cells, Cx43 immunoreactivity was only present in cytosolic compartments. Using confocal microscopy, it is shown here that, in ATP-s cells as well as in peritoneal macrophages, Cx43 and P2X(7) receptors are co-localized to the membrane of ATP-s cells and peritoneal macrophages.
Resumo:
Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors that may exhibit varied morphologic appearances (spindle, epithelioid) and biologic potentials. Given the continuing controversy regarding the type of cell differentiation present in these tumors (muscle versus nerve sheath versus null), we evaluated a set of GISTs, most of which had been previously examined for the presence of smooth muscle differentiation, for expression of CD34, a 115 kDa cell-surface progenitor cell marker also recently identified in a subset of mesenchymal tumors. Using antibody My 10 in deparaffinized, formalin-fixed tissue after pretreatment with microwave energy, we found that 46 of 57, or 81%, of GISTs were CD34+; this fraction of CD34+ tumors exceeded the fraction of these same GISTs found to show muscle actin (72%) expression. In addition, a consistently higher fraction of the tumor cell population was CD34+ than was muscle actin positive. These findings suggest that CD34 is a very sensitive marker for the identification of GISTs. CD34 is normally expressed by endothelial as well as perivascular cells, perhaps related to, but distinct from, vascular smooth muscle cells. While the nature of these latter cells is uncertain, the expression of CD34 in such a large fraction of GISTs may provide evidence of a unique differentiation pathway in these tumors.
Resumo:
Half-fresh apples were immersed in sucrose solution (50% w/w, 27 degrees C) during different times of exposition (2, 4, and 8 h). Then each fruit was sliced from the transversal exposed surface. Density, water, and sugar content were determined for each slice. A mathematical model was fitted to experimental data of water and sucrose content considering the global flux and the tissue shrinkage. By numerical analysis, the binary effective diffusion coefficients as a function of concentration were calculated, using material coordinates and integrating simultaneously two differential equations (for water and sucrose). The coefficients obtained are one or even two orders of magnitude lower than the ones for pure solutions and present an unusual concentration dependence. This comparison shows the influence of the tissue resistance to the diffusion.
Resumo:
Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD 147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
The intra-generic inhibition of bacterial growth observed previously in vivo and in vitro with strains of Salmonella, Citrobacter and E. coli was studied in vitro using S. typhimurium strain F98. There was complete inhibition of multiplication of S. typhimurium when it was added to stationary-phase broth cultures of different Salmonella serotypes, but only partial inhibition when added to broth cultures of E. coli. The degree of inhibition between different mutants of F98 was affected by the numbers of bacteria of the inhibiting strain, but this was not the only factor, since exponential-phase bacterial cells were less inhibitory than stationary-phase cells. The inhibitory effect was produced at temperatures between 20°C and 40°C. The complete inhibition of growth observed between F98 mutants was abolished by ampicillin, rifampicin and streptomycin, but not by nalidixic acid. Inhibition was also prevented by separating the two cultures by a dialysis membrane. A Tnpho A Insertion mutant of F98 was produced which did not show inhibition in vitro but was still inhibitory in vivo. It is suggested that this complete inhibition of bacterial multiplication between organisms of the same genus, which is greater than that produced between organisms from different genera, is mediated by a cell surface protein.