945 resultados para Cascade
Resumo:
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.
Resumo:
Adhesions occur with a high incidence after intra-abdominal surgery but can also develop due to infections, radiation or for idiopathic reasons. The formation of adhesions is initiated by tissue damage and is the result of peritoneal tissue repair involving the activation of the inflammatory system and the coagulation cascade. Acute small bowel obstruction is one of the most common complications and should be diagnosed rapidly using clinical examination and radiological imaging. A complete obstruction is life threatening and in a high percentage of patients requires rapid surgical intervention by laparotomy or laparoscopy depending on the clinical situation and the patients history. Despite numerous investigations, there is no reliable, commonly used method to prevent intra-abdominal adhesions. Minimizing tissue damage and foreign body exposure, avoiding spillage of intestinal and biliary contents as well as a laparoscopic approach seem to have a beneficial effect on the formation of intra-abdominal adhesions.
Resumo:
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.
Resumo:
BACKGROUND: Recurrent airway obstruction (RAO) is a severe chronic respiratory disease affecting horses worldwide, though mostly in the Northern hemisphere. Environmental as well as genetic factors strongly influence the course and prognosis of the disease. Research has been focused on characterization of immunologic factors contributing to inflammatory responses, on genetic linkage analysis, and, more recently, on proteomic analysis of airway secretions from affected horses. The goal of this study was to investigate the interactions between eight candidate genes previously identified in a genetic linkage study and proteins expressed in bronchoalveolar lavage fluid (BALF) collected from healthy and RAO-affected horses. The analysis was carried out with Ingenuity Pathway Analysis(R) bioinformatics software. RESULTS: The gene with the greatest number of indirect interactions with the set of proteins identified is Interleukin 4 Receptor (IL-4R), whose protein has also been detected in BALF. Interleukin 21 receptor and chemokine (C-C motif) ligand 24 also showed a large number of interactions with the group of detected proteins. Protein products of other genes like that of SOCS5, revealed direct interactions with the IL-4R protein. The interacting proteins NOD2, RPS6KA5 and FOXP3 found in several pathways are reported regulators of the NFkappaB pathway. CONCLUSIONS: The pathways generated with IL-4R highlight possible important intracellular signaling cascades implicating, for instance, NFkappaB. Furthermore, the proposed interaction between SOCS5 and IL-4R could explain how different genes can lead to identical clinical RAO phenotypes, as observed in two Swiss Warmblood half sibling families because these proteins interact upstream of an important cascade where they may act as a functional unit.
Resumo:
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
MAP kinase kinase 1 (MKK1) is essential for transmission of Trypanosoma brucei by Glossina morsitans
Resumo:
MAP kinase kinase 1 (MKK1) is encoded by a single copy gene in Trypanosoma brucei. It has been shown recently that MKK1 is not essential for bloodstream forms [14]. To investigate the requirement for MKK1 in other life-cycle stages we generated null mutants in procyclic forms of a fly-transmissible strain. These grew normally in culture and were able to establish midgut infections in tsetse at normal rates and intensities, but were incapable of colonising the salivary glands. Transformation of null mutants with an ectopic copy of MKK1 enabled parasites to complete the life cycle in tsetse and infect mice. This is the first example of a gene that is indispensable for transmission of T. brucei. It also raises the possibility that activating the MKK1 signalling cascade in vitro might trigger the differentiation and proliferation of life-cycle stages of T. brucei that are currently refractory to culture.
Resumo:
During the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. A direct and fast activation of caspase-8 by cathepsin D was shown to be crucial in the initial steps of neutrophil apoptosis. Nevertheless, the activation mechanism of caspase-8 remains unclear. Here, by using site-specific mutants of caspase-8, we show that both cathepsin D-mediated proteolysis and homodimerization of caspase-8 are necessary to generate an active caspase-8. At acidic pH, cathepsin D specifically cleaved caspase-8 but not the initiator caspase-9 or -10 and significantly increased caspase-8 activity in dimerizing conditions. These events were completely abolished by pepstatin A, a pharmacological inhibitor of cathepsin D. The cathepsin D intra-chain proteolysis greatly stabilized the active site of caspase-8. Moreover, the main caspase-8 fragment generated by cathepsin D cleavage could be affinity-labeled with the active site probe biotin-VAD-fluoromethyl ketone, suggesting that this fragment is enzymatically active. Importantly, in an in vitro cell-free assay, the addition of recombinant human caspase-8 protein, pre-cleaved by cathepsin D, was followed by caspase-3 activation. Our data therefore indicate that cathepsin D is able to initiate the caspase cascade by direct activation of caspase-8. As cathepsin D is ubiquitously expressed, this may represent a general mechanism to induce apoptosis in a variety of immune and nonimmune cells.
Resumo:
BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.
Resumo:
A hybrid structure of a synthetic dendronized polymer, two different types of enzymes (superoxide dismutase and horseradish peroxidase), and a fluorescent dye (fluorescein) was synthesized. Thereby, a single polymer chain carried multiple copies of the two enzymes and the fluorescein. The entire attachment chemistry is based on UV/vis-quantifiable bis-aryl hydrazone bond formation that allows direct quantification of bound molecules: 60 superoxide dismutase, 120 horseradish peroxidase, and 20 fluorescein molecules on an average polymer chain of 2000 repeating units. To obtain other enzyme ratios the experimental conditions were altered accordingly. Moreover, it could be shown that both enzymes remained fully active and catalyzed a two-step cascade reaction.
Resumo:
The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major) population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP) on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720) and the Little Ice Age Type Event I (1810–1850). The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900) corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.
Resumo:
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Resumo:
Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.
Resumo:
Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.
Resumo:
Oesophageal and fundic varices belong to the most frequent complications of cirrhosis and portal hypertension. Due to their significant morbidity and mortality, bleedings from oesophageal or fundic varices represent a challenge for the emergency medical team as well as for the gastroenterologist. The patient with a variceal bleeding should be accurately monitored and his/her hemodynamic parameters should be maintained stable with the administration of plasma expanders and blood units when indicated. An antibiotic prophylaxis in this setting--norfloxacin or ceftriaxon--has been demonstrated to significantly reduce morbidity and mortality. Additionally, the early administration of vasoactive compounds, such as terlipressin, somatostatin or octreotide, is associated with beneficial effects in reducing the bleeding. An upper gastrointestinal endoscopy should be generally performed within the first twelve hours from the beginning of the bleeding in order to obtain an accurate diagnosis and to provide an adequate treatment. Endoscopic procedures to control the bleeding include the rubber band ligation, the treatment of the varix with a sclerosing agent or the injection of tissue glue into the varix. In case of recurrent bleeding, beyond the above methods, different techniques, such as the transjugular porto-caval shunt, surgical shunt procedures, as well as embolisation of splanchnic blood vessels, represent additional therapeutic options. However, they are associated with very high mortality rates and their indication has to be discussed case by case by an interdisciplinary team of experts. Future therapies include the optimisation and the improvement of the current medical and endoscopic armamentarium, as well as the application of treatments to novel targets, such as the coagulation cascade.
Resumo:
The autoimmune disease pemphigus vulgaris (PV) manifests as loss of keratinocyte cohesion triggered by autoantibody binding to desmoglein (Dsg)3, an intercellular adhesion molecule of mucous membranes, epidermis, and epidermal stem cells. Here we describe a so far unknown signaling cascade activated by PV antibodies. It extends from a transient enhanced turn over of cell surface-exposed, nonkeratin-anchored Dsg3 and associated plakoglobin (PG), through to depletion of nuclear PG, and as one of the consequences, abrogation of PG-mediated c-Myc suppression. In PV patients (6/6), this results in pathogenic c-Myc overexpression in all targeted tissues, including the stem cell compartments. In summary, these results show that PV antibodies act via PG to abolish the c-Myc suppression required for both maintenance of epidermal stem cells in their niche and controlled differentiation along the epidermal lineage. Besides a completely novel insight into PV pathogenesis, these data identify PG as a potent modulator of epithelial homeostasis via its role as a key suppressor of c-Myc.