957 resultados para Calculus.
Resumo:
The electronic and structural properties and elastic constants of the wurtzite phase of GaN, was investigated by computer simulation at Density Functional Theory level, with B3LYP and B3PW hybrid functional. The electronic properties were investigated through the analysis of the band structures and density of states, and the mechanical properties were studied through the calculus of the elastic constants: C11, C33, C44, C12, and C13. The results show that the maximum of the valence band and the minimum of the conduction band are both located at the Γ point, indicating that GaN is a direct band gap semiconductor. The following constants were obtained for B3LYP and B3PW (in brackets): C11 = 366.9 [372.4], C33 = 390.9 [393.4], C44 = 99.1 [96.9], C12 = 143.6 [155.2], and C13 = 107.6 [121.4].
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
This research aims to elucidate some of the historical aspects of the idea of infinity during the creation of calculus and set theory. It also seeks to raise discussions about the nature of infinity: current infinite and potential infinite. For this, we conducted a survey with a qualitative approach in the form of exploratory study. This study was based on books of Mathematics' History and other scientific works such as articles, theses and dissertations on the subject. This work will bring the view of some philosophers and thinkers about the infinite, such as: Pythagoras, Plato, Aristotle, Galilei, Augustine, Cantor. The research will be presented according to chronological order. The objective of the research is to understand the infinite from ancient Greece with the paradoxes of Zeno, during the time which the conflict between the conceptions atomistic and continuity were dominant, and in this context that Zeno launches its paradoxes which contradict much a concept as another, until the theory Cantor set, bringing some paradoxes related to this theory, namely paradox of Russell and Hilbert's paradox. The study also presents these paradoxes mentioned under the mathematical point of view and the light of calculus and set theory
Resumo:
In this action research study of my calculus classroom consisting of only 12th grade students, I investigated activities that would affect a student’s understanding of mathematical language. The goal in examining these activities in a systematic way was to see if a student’s deeper understanding of math terms and symbols resulted in a better understanding of the mathematical concepts being taught. I discovered that some students will rise to the challenge of understanding mathematics more deeply, and some will not. In the process of expecting more from students, the frustration level of both the students and the teacher increased. As a result of this research, I plan to see what other activities will enhance the understanding of mathematical language.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
This research aims to elucidate some of the historical aspects of the idea of infinity during the creation of calculus and set theory. It also seeks to raise discussions about the nature of infinity: current infinite and potential infinite. For this, we conducted a survey with a qualitative approach in the form of exploratory study. This study was based on books of Mathematics' History and other scientific works such as articles, theses and dissertations on the subject. This work will bring the view of some philosophers and thinkers about the infinite, such as: Pythagoras, Plato, Aristotle, Galilei, Augustine, Cantor. The research will be presented according to chronological order. The objective of the research is to understand the infinite from ancient Greece with the paradoxes of Zeno, during the time which the conflict between the conceptions atomistic and continuity were dominant, and in this context that Zeno launches its paradoxes which contradict much a concept as another, until the theory Cantor set, bringing some paradoxes related to this theory, namely paradox of Russell and Hilbert's paradox. The study also presents these paradoxes mentioned under the mathematical point of view and the light of calculus and set theory
Resumo:
Sturge-Weber syndrome is a nonhereditary congenital condition characterized by leptomeningeal and facial skin angiomatous malformation following the trigeminal nerve path. The intraoral angiomatosis are presented in 40% of cases and results in an important periodontal alteration, increasing the risk of bleeding during dental procedures. A 43-year-old male patient presented with port wine stain on the right side of the face, the entire hard and soft palates, the alveolar ridge, and buccal mucosa, and had an excessive accumulation of calcified masses in both supragingival and subgingival sites, with swelling and generalized inflammation throughout the gingiva and alveolar mucosa. He reported not having sanitized the area for years for fear of bleeding. Periodontal management, to remove calculus and to control gingivitis initiated in the supragingival region and gradually reaching the subgingival region to control oral microbiota, was performed with mild bleeding. The redness of the staining greatly diminished with time and the extreme halitosis of the patient also improved sharply leading to a dramatic improvement in quality of life. Ambulatory care is a feasible alternative for periodontal management that within safety limits for bleeding risks reduces the operational cost.
Resumo:
This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757226]
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.