968 resultados para CYLINDRICAL CONFINEMENT
Resumo:
It has been reported([1]) that when a loosely packed column of saturated sand in a vertical cylindrical container is shock loaded axially by dropping to the floor, large horizontal cracks initiate, grow and eventually fade away in the sand as it settles under gravity. This paper shows that a similar phenomenon can also be observed when shock loading is replaced by forcing water to percolate upward through the sand column. It is believed that our result sheds further light on the physics of formation of these cracks.
Resumo:
A perturbation method is used to examine the linear instability of thermocapillary convection in a liquid bridge of floating half-zone filled with a small Prandtl number fluid. The influence of liquid bridge volume on critical Marangoni number and flow features is analyzed. The neutral modes show that the instability is mainly caused by the bulk flow that is driven by the nonuniform thermocapillary forces acting on the free surface. The hydrodynamic instability is dominant in the case of small Prandtl number fluid and the first instability mode is a stationary bifurcation. The azimuthal wave number for the most dangerous mode depends on the liquid bridge volume, and is not always two as in the case of a cylindrical liquid bridge with aspect ratio near 0.6. Its value may be equal to unity when the liquid bridge is relatively slender.
Resumo:
Cylindrical specimens (4 mm diameter and 4 mm height) of titanium alloy bar were given various heat treatments to provide a wide range of microstructures and mechanical parameters. These specimens were then subjected to high plastic strain at a large strain rate (103 s-1 ) during dynamic compression by a split Hopkinson bar at ambient temperature. The microstructures of the localised shear bands were examined by optical and transmission electron microscopy. The results show that there are two types of localised shear bands: deformed and white shear bands. A detailed observation reveals that there is no difference in the nature of the deformed and white shear bands, but they occur at different stages of localised deformation. It is found that there is a burst of strain, corresponding to a critical strain rate at which the white shear band occurs and no phase transformation occurs in the shear bands.
Resumo:
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.
Resumo:
A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.
Resumo:
An expression for the probability density function of the second order response of a general FPSO in spreading seas is derived by using the Kac-Siegert approach. Various approximations of the second order force transfer functions are investigated for a ship-shaped FPSO. It is found that, when expressed in non-dimensional form, the probability density function of the response is not particularly sensitive to wave spreading, although the mean squared response and the resulting dimensional extreme values can be sensitive. The analysis is then applied to a Sevan FPSO, which is a large cylindrical buoy-like structure. The second order force transfer functions are derived by using an efficient semi-analytical hydrodynamic approach, and these are then employed to yield the extreme response. However, a significant effect of wave spreading on the statistics for a Sevan FPSO is found even in non-dimensional form. It implies that the exact statistics of a general ship-shaped FPSO may be sensitive to the wave direction, which needs to be verified in future work. It is also pointed out that the Newman's approximation regarding the frequency dependency of force transfer function is acceptable even for the spreading seas. An improvement on the results may be attained when considering the angular dependency exactly. Copyright © 2009 by ASME.
Resumo:
本文利用奇异摄动理论的两时间变量展开法,研究了垂直强迫圆柱形容器中的单一水表面驻波模式。假设流体是无粘、不可压且运动是无旋的,在忽略了表面张力的影响下,得到一个具有立方项以及底部驱动项影响的非线性振幅方程。对上述方程进行了数值计算,研究了特定(9,6)模式的表面驻波结构和特性,如驻波的节点分布及驻波随某些参数的变化规律等,从计算的等高线的图象来看,和以往的实验结果相当吻合。
Resumo:
This paper presents a summary of cellular and dendritic morphologies resulting from the upward directional solidification of Al - Ni alloys in a cylindrical crucible. We analysed the coupling of solid-liquid interface morphology with natural and forced convection. The influence of natural convection was first analyzed as a function of growth parameters (solute concentration, growth rate and thermal gradient). In a second step, the influence of axial vibrations on solidification microstructure was investigated by varying vibration parameters (amplitude and frequency). Experimental results were compared to preliminary numerical simulations and a good agreement is found for natural convection. In this study, the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure is pointed out.
Resumo:
We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.
Resumo:
A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.
Resumo:
We present solutions to scattering problems for unsteady disturbances to a mean swirling flow in an annular duct with a rigid 'splitter'. This situation has application to rotor-stator interaction noise in aeroengines, where the flow downstream of the fan is swirling and bifurcates into the by-pass duct and the engine core. We also consider the trailing edge extension of this problem. Inviscid mean flow in a cylindrical annulus is considered, with both axial and swirling (azimuthal) velocity components. The presence of vorticity in the mean flow couples the acoustic and vorticity modes of irrotational flow. Instead we have one combined spectrum of acoustic-vorticity waves in which the 'sonic' and 'nearly-convected' modes are fully coupled. In addition to the aeroacoustics application the results offer insight into the behaviour of these acoustic-vorticity waves, and the precise nature of the coupling between the two types of mode. Two regimes are discussed in which progress has been made, one for a specialised mean flow, uniform axial flow and rigid body swirl, and a second regime in which the frequency is assumed large, valid for any axisymmetric mean flow. The Wiener-Hopf technique is used to solve the scattering problems mathematically, and we present numerical evaluations of these solutions. Several new effects are seen to arise due to the mean vorticity, in particular the generation of sound at a trailing edge due to the scattering of a nearly convected disturbance, in contrast to the way a convected gust silently passes a trailing edge in uniform mean flow.
Resumo:
A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).
Resumo:
Experimental and computational studies on the dynamics of millimeter-scale cylindrical liquid jets are presented. The influences of the modulation amplitude and the nozzle geometry on jet behavior have been considered. Laser Doppler anemometry (LDA) was used in order to extract the velocity field of a jet along its length, and to determine the velocity modulation amplitude. Jet shapes and breakup dynamics were observed via shadowgraph imaging. Aqueous solutions of glycerol were used for these experiments. Results were compared with Lagrangian finite-element simulations with good quantitative agreement. © 2011 The American Physical Society.
Resumo:
The ratios of enstrophy and dissipation moments induced by localized vorticity are inferred to be finite. It follows that the scaling exponents for locally averaged dissipation and enstrophy are equal. However, enstrophy and dissipation exponents measured over finite ranges of scales may be different. The cylindrical vortex profile that yields maximal moment ratios is determined. The moment ratios for cylindrical vortices are used to interpret differences in scale dependence of enstrophy and dissipation previously found in numerical simulations.
Resumo:
We measure the effects of phonon confinement on the Raman spectra of silicon nanowires (SiNWs). We show how previous reports of phonon confinement in SiNWs and nanostructures are actually inconsistent with phonon confinement, but are due to the intense local heating caused by the laser power used for Raman measurements. This is peculiar to nanostructures, and would require orders of magnitude higher power in bulk Si. By varying the temperature, power and excitation energy, we identify the contributions of pure confinement, heating and carrier photo-excitation. After eliminating laser-related effects, the Raman spectra show confinement signatures typical of quantum wires. © 2003 Elsevier B.V. All rights reserved.