900 resultados para CREATINE-KINASE-MB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Resumo:
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Flavopiridol has been shown to potently inhibit CDK1 and 2 (cyclin-dependent kinases 1 and 2) and most recently it has been found that it also inhibits CDK9. The complex CDK9-cyclin T1 controls the elongation phase of transcription by RNA polymerase II. The present work describes a molecular model for the binary complex CDK9-flavopiridol. This structural model indicates that the inhibitor strongly binds to the ATP-binding pocket of CDK9 and the structural comparison of the complex CDK2-flavopiridol correlates the structural differences with differences in inhibition of these CDKs by flavopiridol. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known leading structures such as flavones and adenine derivatives. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) has been detected in several types of plant cells, but the gene has not been reported in sugar cane. Using Citrux paradixi PPi-PFK gene (AF095520 and AF095521) sequences to search the sugar cane EST database, we have identified both the α and β subunits of this enzyme. The deduced amino acid sequences showed 76 and 80% similarity with the corresponding α and β subunits of C. paradisi. A high degree of similarity was also observed among the PFK β subunits when the alignment of the sugar cane sequences was compared to those of Ricinus communis and Solanum tuberosum, it appears that α and β are two distinct subunits; they were found at different concentrations in several sugar cane tissues. It remains to be determined if the different gene expression levels have some physiological importance and how they affect sucrose synthesis, export, and storage in vacuoles. A comparison between the amino acid sequences of β PFKs from a variety of organisms allowed us to identify the two critical Asp residues typical of this enzyme's activity site and the other binding sites; these residues are tightly conserved in all members of this protein family. Apparently, there are catalytic residues on the β subunit of the pyrophosphate-dependent enzyme.
Resumo:
The aim of the present study was to investigate the effect of long-term oral supplementation of creatine on the physiological responses to aerobic training. Twelve purebred Arabian horses were submitted to aerobic training for 90 days, with and without creatine supplementation which consisted of the daily administration of 75g of creatine monohydrate mixed into the ration for 90 days of training. Physical conditioning was conducted on a high performance treadmill and training intensity was stipulated by calculating the V 4 (velocity at which blood lactate reaches 4mmol L -1) determined monthly for each animal. The individual intensity of physical force at 80% of aerobic threshold was established. An incremental exercise test was used to set the individual V4. After a warm up period of 4 min at 4m s -1), the speed was increased at 2min intervals to 6, 8 and 10m s -1). The blood samples were collected 15s before the end of each step to determine the concentration of lactate, packed cell volume, hemoglobin and red cell values. The results demonstrated a significant increase (P<0.05) in V4 in the groups that received creatine supplementation for 60 days or more when compared to the animals without creatine supplememntation. The other hematological variables were similar to all groups. The results showed that the prolonged creatine supplementation may have a beneficial al effect on the equine athletic performance.
Resumo:
The goal of this study was to investigate by means of an ultrasound examination the composition of the longissimus dorsi muscle in 12 purebred Arabian horses submitted to aerobic training for 90 days, with and without creatine supplementation. Creatine supplementation was carried out by daily administration of 75 g creatine monohydrate mixed into the ration during 90 days of training. Physical conditioning was conducted on a high-performance treadmill, and training intensity was stipulated by calculating the velocity at which blood lactate reaches 4 mmol/l, determined monthly for each animal. The individual intensity of physical force was established at 80% of velocity that resulted in a blood lactate level of 4 mmol/l. The cross-sectional area and the thickness of the layer of fat of the longissimus dorsi muscle were measured for each group at the end of 8 months of inactivity and after 30, 60, and 90 days of training without (control groups) or with creatine supplementation (experimental groups). The results showed that aerobic training combined with or without creatine supplementation caused significant longissimus dorsi hypertrophy and reduction in the thickness of the fat layer. No beneficial effect from prolonged creatine supplementation on the body composition of horses was detected. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The Mycobacterium tuberculosis cmk gene, predicted to encode a CMP kinase (CMK), was cloned and expressed, and its product was purified to homogeneity. Steady-state kinetics confirmed that M. tuberculosis CMK is a monomer that preferentially phosphorylates CMP and dCMP by a sequential mechanism. A plausible role for CMK is discussed. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. © 2013 Cruz et al.
Resumo:
Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.
Resumo:
This study examined the effects of long-term creatine supplementation combined with resistance training (RT) on the one-repetition maximum (1RM) strength, motor functional performance (e.g., 30-s chair stand, arm curl, and getting up from lying on the floor tests) and body composition (e.g., fat-free mass, muscle mass, and % body fat using DEXA scans) in older women. Eighteen healthy women (64.9 ± 5.0 years) were randomly assigned in a double-blind fashion to either a creatine (CR, N = 9) or placebo (PL, N = 9) group. Both groups underwent a 12-week RT program (3 days week-1), consuming an equivalent amount of either creatine (5.0 g day-1) or placebo (maltodextrin). After 12 week, the CR group experienced a greater (P < 0.05) increase (Δ%) in training volume (+164.2), and 1RM bench press (+5.1), knee extension (+3.9) and biceps curl (+8.8) performance than the PL group. Furthermore, CR group gained significantly more fat-free mass (+3.2) and muscle mass (+2.8) and were more efficient in performing submaximal-strength functional tests than the PL group. No changes (P > 0.05) in body mass or % body fat were observed from pre- to post-test in either group. These results indicate that long-term creatine supplementation combined with RT improves the ability to perform submaximal-strength functional tasks and promotes a greater increase in maximal strength, fat-free mass and muscle mass in older women. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
(-)-Cubebin is a lignan extracted from the seeds of the pepper Piper cubeba, a commonly eaten spice with beneficial properties, including trypanocidal, anti-inflammatory, analgesic, anti-proliferative and leishmanicidal activities. Because of its therapeutic potential, we investigated the effects of (-)-cubebin on the cytotoxicity, cell proliferation kinetics, mutagenicity and expression of p38 MAP kinase and glutathione S-transferase a2 (GSTa2) using real-time RT-PCR in Rattus norvegicus hepatoma cells. We found that 280 μM (-)-cubebin was cytotoxic after 24, 48 and 72. h of exposure, but not mutagenic at 0.28 μM, 2.8 μM and 28 μM after 26. h. Similarly, exposure to 0.28 μM, 2.8 μM and 28 μM (-)-cubebin for 24, 48, 72 and 96. h did not alter the cell proliferation kinetics. Cells exposed to 28 μM (-)-cubebin for 24. h did not exhibit changes in p38 MAP kinase and GSTa2 expression, indicating that cellular changes were not induced by extracellular stimuli and that (-)-cubebin is likely not metabolized via this pathway. Our results suggest that high levels of (-)-cubebin should be consumed with caution due to the cytotoxic effect observed at the highest concentration. However, at lower concentrations, no cytotoxic, mutagenic or proliferative effects were observed, providing further evidence of the safety of consuming (-)-cubebin. © 2013 Elsevier Inc.