996 resultados para COUPLED GCM
Resumo:
The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.
Resumo:
This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20–30 km, reduced from 30–40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15–35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks.
Resumo:
Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.
Resumo:
A radiometric analysis of the light coupled by optical fiber amplitude modulating extrinsic-type reflectance displacement sensors is presented. Uncut fiber sensors show the largest range but a smaller responsivity. Single cut fiber sensors exhibit an improvement in responsivity at the expense of range. A further increase in responsivity as well as a reduction in the operational range is obtained when the double cut sensor configuration is implemented. The double cut configuration is particularly suitable in applications where feedback action is applied to the moving reflector surface. © 2000 American Institute of Physics.
Resumo:
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.
Resumo:
Coupled atmosphere‐ocean general circulation models have a tendency to drift away from a realistic climatology. The modelled climate response to an increase of CO2 concentration may be incorrect if the simulation of the current climate has significant errors, so in many models, including ours, the drift is counteracted by applying prescribed fluxes of heat and fresh water at the ocean‐atmosphere interface in addition to the calculated surface exchanges. Since the additional fluxes do not have a physical basis, the use of this technique of “flux adjustment” itself introduces some uncertainty in the simulated response to increased CO2. We find that the global‐average temperature response of our model to CO2 increasing at 1% per year is about 30% less without flux adjustment than with flux adjustment. The geographical patterns of the response are similar, indicating that flux adjustment is not causing any gross distortion. The reduced size of the response is due to more effective vertical transport of heat into the ocean, and a somewhat smaller climate sensitivity. Although the response in both cases lies within the generally accepted range for the climate sensitivity, systematic uncertainties of this size are clearly undesirable, and the best strategy for future development is to improve the climate model in order to reduce the need for flux adjustment.
Resumo:
Subantarctic mode water (SAMW) has been shown to be a good indicator of anthropogenic climate change in coupled climate models. SAMW in a coupled climate model and the response of modeled SAMW to increasing CO2 are examined in detail. How SAMW adjusts from climatological values toward a new equilibrium in the coupled model, with different climatological temperature and salinity properties, is shown. The combined formation rate of SAMW and Antarctic intermediate water is calculated as approximately 18 Sv (Sv ≡ 106 m3 s−1) in the Indian sector of the Southern Ocean, slightly lower than climatological values would suggest. When forced with increasing CO2, SAMW is produced at a similar rate but at lower densities. This result suggests that the rate of heat uptake in this part of the ocean will be unchanged by anthropogenic forcing. The important signal in the response of SAMW is the shift to colder and fresher values on isopycnals that is believed to be related to changes in thermodynamic surface forcing. It is shown that, given uniform forcing, SAMW is expected to enhance the signal relative to other water masses. Independent increases in surface heating or freshwater forcing can produce changes similar to those observed, but the two different types of forcing are distinguishable using separate forcing experiments, hodographs, and passive anomaly tracers. The changes in SAMW forced by increasing CO2 are dominated by surface heating, but changes to freshwater fluxes are also important.
Resumo:
The CMIP3 (IPCC AR4) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Circumpolar Currents (ACC) show great diversity in these models, with many even showing reductions in transport. To obtain some understanding of diverse responses in the ACC transport, we investigate both external atmospheric and internal oceanic processes that control the ACC transport responses in these models. While the strengthened westerlies act to increase the tilt of isopycnal surfaces and hence the ACC transport through Ekman pumping effects, the associated changes in buoyancy forcing generally tend to reduce the surface meridional density gradient. The steepening of isopycnal surfaces induced by increased wind forcing leads to enhanced (parameterized) eddy-induced transports that act to reduce the isopycnal slopes. There is also considerable narrowing of the ACC that tends to reduce the ACC transport, caused mainly by the poleward shifts of the subtropical gyres and to a lesser extent by the equatorward expansions of the subpolar gyres in some models. If the combined effect of these retarding processes is larger than that of enhanced Ekman pumping, the ACC transport will be reduced. In addition, the effect of Ekman pumping on the ACC is reduced in weakly stratified models. These findings give insight into the reliability of IPCC-class model predictions of the Southern Ocean circulation, and into the observed decadal-scale steady ACC transport.
Resumo:
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Niño-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.
Resumo:
The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..