945 resultados para COS 7 cell line
Resumo:
Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^
Resumo:
Fusion of nonmetastatic murine melanoma K1735 C19H cells with metastatic human melanoma A375 C15N cells resulted in a hybrid (termed H7) which was highly metastatic in a nude mouse model. The H7 hybrid retained chromosome 17 as the sole intact human chromosome in the cell. A lung bioassay showed that the K1735 C19H cells were present in the lungs of nude mice with s.c. tumors, yet at 6-weeks after tumor resection, no cells remained in the lung and therefore did not form lung metastases. Examination of various phenotypic properties such as in vivo and in vitro growth demonstrated that phenotypically the H7 hybrid was most like the K1735 C19H cell line except for its metastatic ability. In contrast the H7 hybrid cells containing single or multiple copies of human chromosome 17 with a point mutation at codon 249 (arg-gly) of the p53 gene, readily formed lung metastases. A plasmid containing the human p53 from the H7 hybrid and four other contructs with mutations at codon 143 (val-arg), 175 (arg-his), 249 (arg-ser) and 273 (arg-his) were transfected into K1735 C19H cells. K1735 C19H cells expressing human p53 genes with mutations at codons 249, both the arg-ser mutation and the mutation from the H7 hybrid and 273 produced significantly more lung metastases.^ In vitro assays demonstrated that responses to various cytotoxic and DNA damaging agents varied with the presence of mutant p53 and with the type of agent used. When cultured in mouse lung-conditioned medium, the K1735 C19H cell line was growth-inhibited, while cells containing a mutant human p53 (either on the whole chromosome 17, as in the H7 hybrid cells or from a stably transfected construct) were growth stimulated. Western blot analysis of lung-conditioned media derived from either 6-month or 15-month old mice has detected high levels of soluble Fas ligand in the medium from older animals. Comparison of the levels of Fas receptor on the K1735 C19H cell line and the H7 hybrid were almost identical, but 50% of the K1735 C19H cells were killed in the presence of anti-Fas antibody as opposed to 7% of the H7 hybrid cells. The growth-inhibitory effects of the lung-conditioned medium on the K1735 C19H cells were abrogated by coculture with Fas-Fc, which competes with the Fas ligand for receptor binding. Growth-inhibition of the K1735 C19H was 54% when cultured in 60 $\mu$g/0.2 ml lung-conditioned medium and a control Fc, with only 9% inhibition in 60 $\mu$g/0.2 ml lung-conditioned medium and Fas-Fc. Growth of the H7 cells and K1735 C19H cells transfected with various mutant human p53 genes were unchanged by the presence of either the control Fc or the Fas-Fc. This indicates that the presence of human chromosome 17, and mutant p53 in part protects the cells from Fas:Fas ligand induced apoptosis, and allows the growth of lung metastases. ^
Resumo:
Growing cells are continuously processing signals of all varieties and responding to these signals by changes in cellular gene expression. One signal that cells in close proximity relay to each other is cell-cell contact. Non-transformed cells respond to cell-cell contact by arrest of growth and entry into G$\sb0,$ a process known as contact inhibition. Transformed cells do not respond to contact inhibition and continue to grow to high cell density, forming foci when in cell culture and tumors in the living organism. The events surrounding the generation, transduction, and response to cellular contact are poorly understood. In the present study, a novel gene product, drp, is shown to be expressed at high levels in cultured cells at high cell density. This density regulated protein, drp, has an apparent molecular weight of 70 kDa. Northern analysis shows drp to be highly expressed in cardiac and skeletal muscle and least abundant in lung and kidney tissues. By homology to two independently derived sequence tagged sites (STSs) used in the human genome project, drp or a closely related sequence maps to human chromosome 12. Density-dependent increases in drp expression have been demonstrated in six different cell lines including NIH 3T3, Hela and a human teratocarcinoma cell line, PA-1. Cells exhibit increased drp expression both when they are plated at increasing concentrations per unit area, or plated at low density and allowed to grow naturally to higher cell density. Cells at high density can exhibit several phenotypes including growth arrest, accumulation of soluble factors in the media, and increased numbers of cell contacts. Growth arrest by serum starvation or TGF-$\beta$ treatment fails to produce an increase in drp expression. Similarly, treatment of low density cells with conditioned media from high density cells fails to elicit drp expression. These results argue that neither soluble factors accumulated or expressed at high density nor simple exit from the cell cycle is sufficient to produce an increase in drp expression. The expression of drp appears to be uniquely regulated by cell density alone. ^
Resumo:
The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^
Resumo:
Estrogens have been implicated in the normal and neoplastic development of the mammary gland. Although estradiol is essential for early mammary differentiation, its role in postnatal ductal morphogenesis is poorly defined. We have found that neonatal estradiol exposure promotes precocious ductal outgrowth and terminal end bud formation in 21 day-old female mice. In contrast to this precocious phenotype, day 21 estradiol-treated epithelium, transplanted into control host fatpads, grows more slowly than control epithelium. Western and immunohistochemical (IHC) analyses indicate that neonatally-estrogenized glands have significantly less total ER than controls at days 7 and 21, and significantly more stromal ER at day 35. Estrogen receptor α (ER) is present in the gland when treatment is initiated at day 1. We propose that the premature activation of ER by neonatal estradiol exposure, during this critical perinatal period, is a key factor in the alteration of mammary growth and ER expression. ^ To address the role of ER function in mammary morphogenesis, we have developed an in vitro system to study the effect of estradiol exposure in vivo. Keratin and ER-positive mammary epithelial cell lines from 7, 21 and 35 day-old oil or estradiol treated mice have been established. Cell lines derived from estradiol-treated mice grow significantly slower than cells from control glands. Although the level of ER expressed by each cell line is correlated to its rate of growth, epithelial growth in vitro is estradiol-independent and antiestrogen-insensitive. Estradiol-induced transcription from an ERE-reporter in transiently-transfected cell lines confirms the functionality of the ER detected by western and IHC. However, there are no differences in estradiol-stimulated transcription between cell lines. ^ In conclusion, neonatal estradiol treatment alters the pattern of ER expression in mammary epithelial and stromal cells in vivo, and the growth of mammary epithelial cells in vivo and in vitro. When grown outside of the estrogenized host, exposed epithelium grows more slowly than the control. Therefore, an extra-epithelial factor is necessary for enhanced epithelial growth. Our model, which couples an in vivo-in vitro approach, can be used in the future to identify factors involved in the period of early mammary outgrowth and carcinogen susceptibility. ^
Resumo:
Progression of liver fibrosis to HCC (hepatocellular carcinoma) is a very complex process which involves several pathological phenomena, including hepatic stellate cell activation, inflammation, fibrosis and angiogenesis. Therefore inhibiting multiple pathological processes using a single drug can be an effective choice to curb the progression of HCC. In the present study, we used the mTOR inhibitor everolimus to observe its effect on the in vitro activation of hepatic stellate cells and angiogenesis. The results of the present study demonstrated that everolimus treatment blocked the functions of the immortalized human activated hepatic stellate cell line LX-2 without affecting the viability and migration of primary human stellate cells. We also observed that treatment with everolimus (20 nM) inhibited collagen production by activated stellate cells, as well as cell contraction. Everolimus treatment was also able to attenuate the activation of primary stellate cells to their activated form. Angiogenesis studies showed that everolimus blocked angiogenesis in a rat aortic ring assay and inhibited the tube formation and migration of liver sinusoidal endothelial cells. Finally, everolimus treatment reduced the load of tumoral myofibroblasts in a rat model of HCC. These data suggest that everolimus targets multiple mechanisms, making it a potent blocker of the progression of HCC from liver fibrosis.
Resumo:
Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.
Resumo:
OBJECTIVES Emdogain, containing an extract of fetal porcine enamel matrix proteins, is a potent stimulator of in vitro osteoclastogenesis. The underlying molecular mechanisms are, however, unclear. MATERIAL AND METHODS Here, we have addressed the role of transforming growth factor-beta receptor type 1 (TGF-βRI) kinase activity on osteoclastogenesis in murine bone marrow cultures. RESULTS Inhibition of TGF-βRI kinase activity with SB431542 abolished the effect of Emdogain on osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand or tumor necrosis factor-alpha. SB431542 also suppressed the Emdogain-mediated increase of OSCAR, a co-stimulatory protein, and dendritic cell-specific transmembrane protein and Atp6v0d2, the latter two being involved in cell fusion. Similar to transforming growth factor-beta1 (TGF-β), Emdogain could not compensate for the inhibition of IL-4 and IFNγ on osteoclast formation. When using the murine macrophage cell line RAW246.7, SB431542 and the smad-3 inhibitor SIS3 blocked Emdogain-stimulated expression of the transcription factor NFATc1. CONCLUSIONS Taken together, the data suggest that TGF-βRI kinase activity is necessary to mediate in vitro effects of Emdogain on osteoclastogenesis. CLINICAL RELEVANCE Based on these in vitro data, we can speculate that at least part of the clinical effects of Emdogain on osteoclastogenesis is mediated via TGF-β signaling.
Resumo:
BACKGROUND Among other mismatches between human and pig, incompatibilities in the blood coagulation systems hamper the xenotransplantation of vascularized organs. The provision of the porcine endothelium with human thrombomodulin (hTM) is hypothesized to overcome the impaired activation of protein C by a heterodimer consisting of human thrombin and porcine TM. METHODS We evaluated regulatory regions of the THBD gene, optimized vectors for transgene expression, and generated hTM expressing pigs by somatic cell nuclear transfer. Genetically modified pigs were characterized at the molecular, cellular, histological, and physiological levels. RESULTS A 7.6-kb fragment containing the entire upstream region of the porcine THBD gene was found to drive a high expression in a porcine endothelial cell line and was therefore used to control hTM expression in transgenic pigs. The abundance of hTM was restricted to the endothelium, according to the predicted pattern, and the transgene expression of hTM was stably inherited to the offspring. When endothelial cells from pigs carrying the hTM transgene--either alone or in combination with an aGalTKO and a transgene encoding the human CD46-were tested in a coagulation assay with human whole blood, the clotting time was increased three- to four-fold (P<0.001) compared to wild-type and aGalTKO/CD46 transgenic endothelial cells. This, for the first time, demonstrated the anticoagulant properties of hTM on porcine endothelial cells in a human whole blood assay. CONCLUSIONS The biological efficacy of hTM suggests that the (multi-)transgenic donor pigs described here have the potential to overcome coagulation incompatibilities in pig-to-primate xenotransplantation.
Resumo:
Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.
Resumo:
Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.
Resumo:
Two new classes of radiolabeled GRP receptor antagonists are studied and compared with the well-established statine-based receptor antagonist DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (RM2, 1; DOTA:1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Sta:(3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid). The bombesin-based pseudopeptide DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3 (RM7, 2), and the methyl ester DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-OCH3 (ARBA05, 3) analogues are labeled with (111)In and evaluated in vitro in PC-3 cell line and in vivo in PC-3 tumor-bearing nude mice. Antagonist potency was assessed by immunofluorescence-based receptor internalization and Ca(2+) mobilization assays. The conjugates showed good binding affinity, the IC50 value of 2 (3.2 ± 1.8 nM) being 2 and 10 times lower than 1 and 3. Compared to (111)In-1, (111)In-2 showed higher uptake in target tissues such as pancreas (1.5 ± 0.5%IA/g and 39.8 ± 9.3%IA/g at 4 h, respectively), whereas the compounds had similar tumor uptake (11.5 ± 2.4%IA/g and 11.8 ± 3.9%IA/g at 4h, respectively). The displacement of the radioligand in vivo was different in different receptor positive organs and depended on the displacing peptide.
Resumo:
Among all classes of nanomaterials, silver nanoparticles (AgNPs) have potentially an important ecotoxicological impact, especially in freshwater environments. Fish are particularly susceptible to the toxic effects of silver ions and, with knowledge gaps regarding the contribution of dissolution and unique particle effects to AgNP toxicity, they represent a group of vulnerable organisms. Using cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes of rainbow trout (Oncorhynchus mykiss) as in vitro test systems, we assessed the cytotoxicity of the representative AgNP, NM-300K, and AgNO3 as an Ag+ ion source. Lack of AgNP interference with the cytotoxicity assays (AlamarBlue, CFDA-AM, NRU assay) and their simultaneous application point to the compatibility and usefulness of such a battery of assays. The RTH-149 and RTL-W1 liver cell lines exhibited similar sensitivity as primary hepatocytes towards AgNP toxicity. Leibovitz's L-15 culture medium composition (high amino acid content) had an important influence on the behaviour and toxicity of AgNPs towards the RTL-W1 cell line. The obtained results demonstrate that, with careful consideration, such an in vitro approach can provide valuable toxicological data to be used in an integrated testing strategy for NM-300K risk assessment.
Resumo:
BACKGROUND The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelium has been recognized as a potential entry site of immune cells into the central nervous system during immunosurveillance and neuroinflammation. The location of the choroid plexus impedes in vivo analysis of immune cell trafficking across the BCSFB. Thus, research on cellular and molecular mechanisms of immune cell migration across the BCSFB is largely limited to in vitro models. In addition to forming contact-inhibited epithelial monolayers that express adhesion molecules, the optimal in vitro model must establish a tight permeability barrier as this influences immune cell diapedesis. METHODS We compared cell line models of the mouse BCSFB derived from the Immortomouse(®) and the ECPC4 line to primary mouse choroid plexus epithelial cell (pmCPEC) cultures for their ability to establish differentiated and tight in vitro models of the BCSFB. RESULTS We found that inducible cell line models established from the Immortomouse(®) or the ECPC4 tumor cell line did not express characteristic epithelial proteins such as cytokeratin and E-cadherin and failed to reproducibly establish contact-inhibited epithelial monolayers that formed a tight permeability barrier. In contrast, cultures of highly-purified pmCPECs expressed cytokeratin and displayed mature BCSFB characteristic junctional complexes as visualized by the junctional localization of E-cadherin, β-catenin and claudins-1, -2, -3 and -11. pmCPECs formed a tight barrier with low permeability and high electrical resistance. When grown in inverted filter cultures, pmCPECs were suitable to study T cell migration from the basolateral to the apical side of the BCSFB, thus correctly modelling in vivo migration of immune cells from the blood to the CSF. CONCLUSIONS Our study excludes inducible and tumor cell line mouse models as suitable to study immune functions of the BCSFB in vitro. Rather, we introduce here an in vitro inverted filter model of the primary mouse BCSFB suited to study the cellular and molecular mechanisms mediating immune cell migration across the BCSFB during immunosurveillance and neuroinflammation.