918 resultados para COMPUTER-SIMULATION
Resumo:
Although current concepts of anterior femoroacetabular impingement predict damage in the labrum and the cartilage, the actual joint damage has not been verified by computer simulation. We retrospectively compared the intraoperative locations of labral and cartilage damage of 40 hips during surgical dislocation for cam or pincer type femoroacetabular impingement (Group I) with the locations of femoroacetabular impingement in 15 additional hips using computer simulation (Group II). We found no difference between the mean locations of the chondrolabral damage of Group I and the computed impingement zone of Group II. The standard deviation was larger for measures of articular damage from Group I in comparison to the computed values of Group II. The most severe hip damage occurred at the zone of highest probability of femoroacetabular impact, typically in the anterosuperior quadrant of the acetabulum for both cam and pincer type femoroacetabular impingements. However, the extent of joint damage along the acetabular rim was larger intraoperatively than that observed on the images of the 3-D joint simulations. We concluded femoroacetabular impingement mechanism contributes to early osteoarthritis including labral lesions. LEVEL OF EVIDENCE: Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Resumo:
Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, λ-i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients are simulated and compared with an earlier-developed BCTRAN-based model. Black start energization cases are also simulated as a means of model evaluation and compared with actual event records. The simulated results using the model developed here are reasonable and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent on the accuracy of the equipment model and its parameters. This work is significant in that it advances existing parameter estimation methods in cases where the available data and measurements are incomplete. The accuracy of EMTP simulation for power systems including three-phase autotransformers is thus enhanced. Theoretical results obtained from this work provide a sound foundation for development of transformer parameter estimation methods using engineering optimization. In addition, it should be possible to refine which information and measurement data are necessary for complete duality-based transformer models. To further refine and develop the models and transformer parameter estimation methods developed here, iterative full-scale laboratory tests using high-voltage and high-power three-phase transformer would be helpful.
Resumo:
This document corresponds to the tutorial on realistic neural modeling given by David Beeman at WAM-BAMM*05, the first annual meeting of the World Association of Modelers (WAM) Biologically Accurate Modeling Meeting (BAMM) on March 31, 2005 in San Antonio, TX. Part I - Introduction to Realistic Neural Modeling for the Beginner: This is a general overview and introduction to compartmental cell modeling and realistic network simulation for the beginner. Although examples are drawn from GENESIS simulations, the tutorial emphasizes the general modeling approach, rather than the details of using any particular simulator. Part II - Getting Started with Modeling Using GENESIS: This builds upon the background of Part I to describe some details of how this approach is used to construct cell and network simulations in GENESIS. It serves as an introduction and roadmap to the extended hands-on GENESIS Modeling Tutorial.
Resumo:
We describe four recent additions to NEURON's suite of graphical tools that make it easier for users to create and manage models: an enhancement to the Channel Builder that facilitates the specification and efficient simulation of stochastic channel models
Resumo:
Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.
Resumo:
Physically-based modeling for computer animation allows to produce more realistic motions in less time without requiring the expertise of skilled animators. But, a computer animation is not only a numerical simulation based on classical mechanics since it follows a precise story-line. One common way to define aims in an animation is to add geometric constraints. There are several methods to manage these constraints within a physically-based framework. In this paper, we present an algorithm for constraints handling based on Lagrange multipliers. After few remarks on the equations of motion that we use, we present a first algorithm proposed by Platt. We show with a simple example that this method is not reliable. Our contribution consists in improving this algorithm to provide an efficient and robust method to handle simultaneous active constraints.
Resumo:
Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.
Resumo:
eural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.
Resumo:
Im Rahmen des blended learning kann eine E-Learning-Webseite als Begleitmaterial einer Lehrveranstaltung eingesetzt werden oder Studierende zur aktiven Teilnahme an der Erstellung der Webseiteninhalte anregen. Darüber hinaus eignet sich eine solche Webseite als Plattform zur E-Learning-Forschung. Auch empirische Studien können dort eingebettet werden. Eine weitere wissenschaftliche Anwendung bietet die Analyse des Nutzerverhaltens, mit der sich aktuelle Forschungsergebnisse zum Lernen mit Hypermedien überprüfen lassen. Wir beschreiben eine solche, vielseitig einsetzbare Webseite, die eine Verknüpfung von universitärer Lehre und Forschung ermöglicht und als Anregung für ähnliche Projekte dienen kann. Erste Erfahrungen werden dabei berichtet und ausgewählte Empfehlungen für Dozierende und Forscher abgeleitet.
Resumo:
This booklet contains abstracts of papers presented at a biochemical engineering symposium conducted at the University of Nebraska-Lincoln on April 29, 1972. This was the second annual symposium on this subject, the first having been held at Kansas State University on June 4, 1971. It is expected that future symposia will alternate between the two campuses. ContentsS.H. Lin, Kansas State University, "Enzyme Reaction in a Tubular Reactor with Laminar Flow" Gregory C. Martin, University of Nebraska, "Estimation of Parameters in Population Models for Schizosaccharomyces pombe from Chemostat Data" Jaiprakash S. Shastry and Prakash N. Mishra, Kansas State University, "Immobilized Enzymes: Analysis of Ultrafiltration Reactors" Mark D. Young, University of Nebraska, "Modelling Unsteady-State Two-Species Data Using Ramkrishna's Staling Model" G.C.Y. Chu, Kansas State University, "Optimization of Step Aeration Waste Treatment Systems Using EVOP" Shinji Goto, University of Nebraska, "Growth of the Blue-Green Alga Microcytis aeruginosa under Defined Conditions" Prakash N. Mishra and Thomas M.C. Kuo, Kansas State University, "Digital Computer Simulation of the Activated Sludge System: Effect of Primary Clarifier on System Performance" Mark D. Young, University of Nebraska, "Aerobic Fermentation of Paunch Liquor"
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.