964 resultados para CO2 FIXATION
Resumo:
Although loosening of cemented glenoid components is one of the major complications of total shoulder arthroplasty, there is little information about factors affecting initial fixation of these components in the scapular neck. This study was performed to assess the characteristics of structural fixation of pegged glenoid components, if inserted with two different recommended cementing techniques. Six fresh-frozen shoulder specimens and two types of glenoid components were used. The glenoids were prepared according to the instructions and with the instrumentation of the manufacturer. In 3 specimens, the bone cement was inserted into the peg receiving holes (n = 12) and applied to the back surface of the glenoid component with a syringe. In the other 3 specimens, the cement was inserted into the holes (n = 15) by use of pure finger pressure: no cement was applied on the backside of the component. Micro-computed tomography scans with a resolution of 36 microm showed an intact cement mantle around all 12 pegs (100%) when a syringe was used. An incomplete cement plug was found in 7 of 15 pegs (47%) when the finger-pressure technique was used. Cement penetration into the cancellous bone was deeper in osteopenic bone. Application of bone cement on the backside of the glenoid prosthesis improved seating by filling out small spaces between bone and polyethylene resulting from irregularities after reaming or local cement extrusion from a drill hole. The fixation of a pegged glenoid component is better if the holes are filled with cement under pressure by use of a syringe and if cement is applied to the back of the glenoid component than if cement is inserted with pure finger pressure and no cement is applied to the back surface of the component.
Resumo:
BACKGROUND: Estimation of respiratory deadspace is often based on the CO2 expirogram, however presence of the CO2 sensor increases equipment deadspace, which in turn influences breathing pattern and calculation of lung volume. In addition, it is necessary to correct for the delay between the sensor and flow signals. We propose a new method for estimation of effective deadspace using the molar mass (MM) signal from an ultrasonic flowmeter device, which does not require delay correction. We hypothesize that this estimation is correlated with that calculated from the CO2 signal using the Fowler method. METHODS: Breath-by-breath CO2, MM and flow measurements were made in a group of 77 term-born healthy infants. Fowler deadspace (Vd,Fowler) was calculated after correcting for the flow-dependent delay in the CO2 signal. Deadspace estimated from the MM signal (Vd,MM) was defined as the volume passing through the flowhead between start of expiration and the 10% rise point in MM. RESULTS: Correlation (r = 0.456, P < 0.0001) was found between Vd,MM and Vd,Fowler averaged over all measurements, with a mean difference of -1.4% (95% CI -4.1 to 1.3%). Vd,MM ranged from 6.6 to 11.4 ml between subjects, while Vd,Fowler ranged from 5.9 to 12.0 ml. Mean intra-measurement CV over 5-10 breaths was 7.8 +/- 5.6% for Vd,MM and 7.8 +/- 3.7% for Vd,Fowler. Mean intra-subject CV was 6.0 +/- 4.5% for Vd,MM and 8.3 +/- 5.9% for Vd,Fowler. Correcting for the CO2 signal delay resulted in a 12% difference (P = 0.022) in Vd,Fowler. Vd,MM could be obtained more frequently than Vd,Fowler in infants with CLD, with a high variability. CONCLUSIONS: Use of the MM signal provides a feasible estimate of Fowler deadspace without introducing additional equipment deadspace. The simple calculation without need for delay correction makes individual adjustment for deadspace in FRC measurements possible. This is especially important given the relative large range of deadspace seen in this homogeneous group of infants.
Resumo:
PURPOSE: To evaluate the effect of CO2 laser treatment through topically applied amine fluoride solution on demineralised enamel. MATERIALS AND METHODS: Sixty extracted human molar crowns were selected and cut longitudinally into half. One half was subjected to a 10-day pH-cycling procedure to create caries-like lesions, whereas the other was left non-demineralised. The following treatments were randomly assigned (one treatment per tooth, on respective non-demineralised and demineralised matched specimens): exposure to a 1% amine fluoride solution for 15 s without irradiation (group I), irradiation for 15 s with a continuous-wave CO2 laser (group II), or laser-treatment for 15 s through the amine fluoride solution applied immediately beforehand (group III). Fluoride uptake (n = 30) and acid resistance (n = 30) were determined after treatment. Enamel surface alterations after laser irradiation were monitored using scanning electron microscopy. RESULTS: In groups I and III, an increased fluoride uptake was detected (p < or = 0.05). Laser irradiation through topical fluoride resulted in an increased acid resistance of sound and demineralised enamel specimens in deeper layers (p < or = 0.05). In addition, less surface alterations were observed in SEM examination of specimens irradiated through the amine fluoride solution compared with counterparts treated with laser only. CONCLUSIONS: CO2 laser light application through an amine fluoride solution may be instrumental in enhancing acid resistance of sound and demineralised enamel.
Resumo:
PURPOSE: The aim of this follow-up study was to evaluate the clinical usefulness of a new type of 3-dimensional (3D) miniplate for open reduction and monocortical fixation of mandibular angle fractures. PATIENTS AND METHODS: In 20 consecutive patients, noncomminuted mandibular angle fractures were treated with open reduction and fixation using a 2 mm 3D miniplate system in a transoral approach. All patients were systematically monitored until 6 months postoperatively. Among the outcome parameters recorded were infection, hardware failure, wound dehiscence, and sensory disturbance of the inferior alveolar nerve. RESULTS: The mean operation time from incision to wound closure was 65 minutes. Two patients had a mucosal wound dehiscence with no consequences. None developed an infection requiring a plate removal. All but 2 patients had normal sensory function 3 months after surgery. Plate fracture occurred in one patient in whom a preceding surgical removal of the third molar had been the reason for the mandibular fracture. In the absence of clinical symptoms, the patient declined plate removal. On final follow-up, fracture healing was considered clinically complete in all patients. CONCLUSIONS: The 3D plating system described here is suitable for fixation of simple mandibular angle fractures and is an easy-to-use alternative to conventional miniplates. The system may be contraindicated in patients in whom insufficient interfragmentary bone contact causes minor stability of the fracture.
Resumo:
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Resumo:
PURPOSE: The purpose of this systematic review was to evaluate relapse and its causes in bilateral sagittal split setback osteotomy with rigid internal fixation. MATERIALS AND METHODS: Literature research was done in databases such as PubMed, Ovid, the Cochrane Library, and Google Scholar Beta. From the original 488 articles identified, 14 articles were finally included. Only 5 studies were prospective and 9 retrospective. The range of postoperative study records was from 6 weeks to 12.7 years. RESULTS: The horizontal short-term relapse was between 9.9% and 62.1% at point B and between 15.7% and 91.3% at pogonion. Long-term relapse was between 14.9% and 28.0% at point B and between 11.5% and 25.4% at pogonion. CONCLUSIONS: Neither large increase nor decrease of relapse was seen when short-term values were compared with long-term. Bilateral sagittal split osteotomy for mandibular setback in combination with orthodontics is an effective treatment of skeletal Class III and a stable procedure in the short- and long-term. The etiology of relapse is multifactorial: the proper seating of the condyles, the amount of setback, the soft tissue and muscles, remaining growth and remodeling, and gender were identified. Age did not show any correlations. To obtain reliable scientific evidence, further short- and long-term research of bilateral sagittal split osteotomy setback with rigid internal fixation should exclude additional surgery, ie, genioplasty or maxillary surgery, and include correlation statistics.
Resumo:
Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.
Limited open reduction and internal fixation of displaced intra-articular fractures of the calcaneum
Resumo:
The extended lateral L-shaped approach for the treatment of displaced intra-articular fractures of the calcaneum may be complicated by wound infection, haematoma, dehiscence and injury to the sural nerve. In an effort to reduce the risk of problems with wound healing a technique was developed that combined open reduction and fixation of the joint fragments and of the anterior process with percutaneous reduction and screw fixation of the tuberosity. A group of 24 patients with unilateral isolated closed Sanders type II and III fractures was treated using this technique and compared to a similar group of 26 patients managed by the extended approach and lateral plating. The operation was significantly shorter (p < 0.001) in the first group, but more minor secondary procedures and removal of heel screws were necessary. There were no wound complications in this group, whereas four minor complications occurred in the second group. The accuracy and maintenance of reduction, and ultimate function were equivalent.
Resumo:
BACKGROUND: Percutaneous Kirschner wire fixation represents the classic treatment for displaced supracondylar humeral fractures in childhood. This type of treatment first requires satisfactory reduction of the fracture. Failure to achieve a satisfactory reduction or inadequate stabilization can result in instability of the fracture fragments, which can result in either an unsatisfactory cosmetic or functional outcome. In our experience, these problems can be overcome with the use of a small lateral external fixator. METHODS: Between 1999 and 2005, thirty-one of 170 Gartland type-III supracondylar humeral fractures were treated with a lateral external fixator. The outcome of treatment was analyzed with regard to limb alignment, elbow movement, cosmetic appearance, and patient satisfaction. RESULTS: In twenty-eight of the thirty-one patients, a satisfactory reduction was achieved with closed methods. All children except one had a normal or good range of movement. The cosmetic result was excellent in all cases. All of the children and their parents stated that they would choose this treatment again. CONCLUSIONS: The use of a small lateral external fixator seems to be a safe alternative for the treatment of displaced supracondylar fractures of the humerus when a closed reduction appears to be unattainable by means of manipulation alone or when sufficient stability is not achieved with standard methods of Kirschner wire fixation.
Resumo:
BACKGROUND: The main indication for sacrospinous ligament suspension is to correct either total procidentia, a posthysterectomy vaginal vault prolapse with an associated weak cardinal uterosacral ligament complex, or a posthysterectomy enterocele. This study aimed to evaluate sexual function and anatomic outcome for patients after sacrospinous ligament suspension. METHODS: For this study, 52 patients who had undergone sacrospinous ligament fixation during the preceding 5 years were asked to complete the Female Sexual Function Index (FSFI) questionnaire. The patients were vaginally examined using the ICS POP score, and the results were compared with their preoperative status. For statistical analysis, GraphPad for Windows, version 4.0, was used. RESULTS: The 52 patients were examined during a follow-up period of 38 months. No major intraoperative complications were noted. Recurrence of symptomatic apical descent was noted in 6% of the patients and de novo prolapse in 13.5%. Only one patient was symptomatic. Three patients experienced de novo dyspareunia, which resolved in two cases after stitch removal. Sexual function was good, rating higher than three points for each of the domains including satisfaction, lubrication, desire, orgasm, and pain. CONCLUSION: Sacrospinous ligament fixation still is a valuable option for the treatment of vaginal vault prolapse. Sexual function is satisfactory, with few cases of de novo dyspareunia.