927 resultados para CIRCADIAN OSCILLATORS
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
This study investigates whether different diurnal types (morning versus evening) differ in their estimation of time duration at different times of the day. Given that the performance of morning and evening types is typically best at their preferred times of day, and assuming different diurnal trends in subjective alertness (arousal?) for morning and evening types, and adopting the attentional gate model of time duration estimation, it was predicted that morning types would tend to underestimate and be more accurate in the morning compared to evening types where the opposite pattern was expected. Nineteen morning types, 18 evening types and 18 intermediate types were drawn from a large sample (N=1175) of undergraduates administered the Early/Late Preference Scale. Groups performed a time duration estimation task using the production method for estimating 20-s unfilled intervals at two times of day: 0800/1830. The median absolute error, median directional error and frequency of under- and overestimation were analysed using repeated-measures ANOVA. While all differences were statistically non-significant, the following trends were observed: morning types performed better than evening types; participants overestimated in the morning and underestimated in the evening; and participants were more accurate later in the day. It was concluded that the trends are inconsistent with a relationship between subjective alertness and time duration estimation but consistent with a possible relationship between time duration estimation and diurnal body temperature fluctuations. (C) 2002 Elsevier Ltd. All rights reserved.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Plants are necessarily complex systems that require monitoring of multiple environmental signals and, in response to those signals, coordination of differentiation and development of an extensive array of cell types at multiple locations. This coordination must rely on integration of long-distance signals that provide a means of communication among different plant parts. We propose that the relatively well-characterized classical phytohormones must act with several other long-distance signals to achieve this level of organization with dynamic yet measured responses. This is supported by observations that classical phytohormones: (i) operate in complex yet experimentally unresolved networks involving cross-talk and feedback, (ii) are generally multifunctional and nonspecific and hence must rely on other long-distance cues or pre-set conditions to achieve specificity and (iii) are likely to mask roles of other long-distance signals in several experimental contexts. We present evidence for involvement of novel long-distance signals in three developmental processes-branching, flowering and nodulation, and discuss the possible identities of novel signalling molecules.
Resumo:
We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.
Resumo:
Sleepiness is a significant contributor to car crashes and sleepiness related crashes have higher mortality and morbidity than other crashes. Young adult drivers are at particular risk for sleepiness related car crashes. It has been suggested that this is because young adults are typically sleepier than older adults because of chronic sleep loss, and more often drive at times of increased risk of acute sleepiness. This prospective study aimed to determine the relationship between predicted and perceived sleepiness while driving in 47 young-adult drivers over a 4-week period. Sleepiness levels were predicted by a model incorporating known circadian and sleep factors influencing alertness, and compared to subjective ratings of sleepiness during 25 18 driving episodes. Results suggested that young drivers frequently drive while at risk of crashing, at times of predicted sleepiness (>7% of episodes) and at times they felt themselves to be sleepy (>23% of episodes). A significant relationship was found between perceived and predicted estimates of sleepiness. However, the participants nonetheless drove at these times. The results of this study may help preventative programs to specifically target factors leading to increased sleepiness when driving (particularly time of day), and to focus interventions to stop young adults from driving when they feel sleepy. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Morningness scales have been translated into several languages, but it lack of normative data and methodological differences make cross-cultural comparisons difficult. This study examines the psychometric properties and factor structure of the Composite Scale of Morningness (CSM) in samples from five countries: France (n = 627), Italy (n, = 702), Spain (n = 391), Thailand (n. = 503), and Australia (17 = 654). Strong national differences are identified. A quadratic relationship between age and CSM total score was apparent in the Australian data with a downward trend after age 35 yrs. There was no age effect in air), sample in the range from 18 to 29 yrs. Factor analysis identified a three-factor solution in all groups for both men and women. Tucker's congruence coefficients indicate that: (1) this solution is highly congruent between sexes in each culture, and (2) a morning affect factor is highly congruent between cultures. These results indicate there are national differences in factorial structure and that cut-off scores used to categorize participants as morning- and evening-types should be established for different cultural and age groups.
Resumo:
It is unclear whether a random plasma cortisol measurement and the corticotropin (ACTH) test adequately reflect glucocorticoid secretory capacity in critical illness. This study aimed to determine whether these tests provide information representative of the 24 hour period. Plasma cortisol was measured hourly for 24 hours in 21 critically ill septic patients followed by a corticotropin test with 1 μ g dose administered intravenously. Serum and urine were analysed for ACTH and free cortisol respectively. Marked hourly variability in plasma cortisol was evident (coefficient of variation 8-30%) with no demonstrable circadian rhythm. The individual mean plasma cortisol concentrations ranged from 286 59 nmol/l to 796 &PLUSMN; 83 nmol/l. The 24 hour mean plasma cortisol was strongly correlated with both random plasma cortisol (r(2) 0.9, P< 0.0001) and the cortisol response to corticotropin (r(2) 0.72, P< 0.001). Only nine percent of patients increased their plasma cortisol by 250 nmol/l after corticotropin (euadrenal response). However, 35% of non-responders had spontaneous hourly rises > 250 nmol/l thus highlighting the limitations of a single point corticotropin test. Urinary free cortisol was elevated (865&PLUSMN; 937 nmol) in both corticotropin responders and non-responders suggesting elevated plasma free cortisol. No significant relationship was demonstrable between plasma cortisol and ACTH. We conclude that although random cortisol measurements and the low dose corticotropin tests reliably reflect the 24 hour mean cortisol in critical illness, they do not take into account the pulsatile nature of cortisol secretion. Consequently, there is the potential for erroneous conclusions about adrenal function based on a single measurement. We suggest that caution be exercised when drawing conclusions on the adequacy of adrenal function based on a single random plasma cortisol or the corticotropin test.
Resumo:
We consider a universal set of quantum gates encoded within a perturbed decoherence-free subspace of four physical qubits. Using second-order perturbation theory and a measuring device modelled by an infinite set of harmonic oscillators, simply coupled to the system, we show that continuous observation of the coupling agent induces inhibition of the decoherence due to spurious perturbations. We thus advance the idea of protecting or even creating a decoherence-free subspace for processing quantum information.
Resumo:
Approximately 1-2% of the tropical abalone Haliotis asinina inhabiting Heron Island Reef are infected with opecoelid digeneans. These largely inhabit the haemocoel surrounding the cerebral ganglia and digestive gland-gonad complex, and infected abalone typically have significantly reduced or ablated gonads. Observations of infected abalone reveal two distinct cercarial emergence patterns, one which correlates tightly with the abalone's highly regular and synchronous fortnightly spawning cycle, and the other which occurs in a circadian pattern. The former appears to be a novel emergence strategy not previously observed in digeneans. While the cercariae in all abalone are morphologically indistinguishable, comparison of sequences from the internal transcribed spacer 2 (ITS 2) region of the ribosomal DNA reveals a 5.7% difference between cercariae displaying different emergence patterns, indicating these are two distinct species that probably belong to the same genus. The ITS 2 sequences of the species with the daily emergence pattern are identical to that of an undescribed adult opecoelid from the gut of the barramundi cod, Cromileptes altivelis. Combined molecular, morphological and emergence data suggest that while these opecoelid cercariae use the same first intermediate host and are closely related species-members of the genus Allopodocotyle-they fill different ecological niches that are likely to include different definitive hosts.
Resumo:
Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures-all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
In this paper we describe the design and fabrication of a mechanical autonomous impact oscillator with a MEMS resonator as the frequency control element. The design has been developed with scalability to large 2-D arrays of coupled oscillators in mind. The dynamic behaviour of the impact oscillator was numerically studied and it was found that the geometry nonlinearity has an effect on the static pull-in voltage and equilibrium position. The external driving power can alter the frequency of the impact oscillator. The autonomous nature of the oscillator simplifies the complexity of the drive circuitry and is essential for large 2-D arrays.