968 resultados para CHAIN GROWTH
Prolonged hyperinsulinemia affects metabolic signal transduction markers in a tissue specific manner
Resumo:
Insulin dysregulation is common in horses although the mechanisms of metabolic dysfunction are poorly understood. We hypothesized that insulin signaling in striated (cardiac and skeletal) muscle and lamellae may be mediated through different receptors as a result of receptor content, and that transcriptional regulation of downstream signal transduction and glucose transport may also differ between tissues sites during hyperinsulinemia. Archived samples from horses treated with a prolonged insulin infusion or a balanced electrolyte solution were used. All treated horses developed marked hyperinsulinemia and clinical laminitis. Protein expression was compared across tissues for the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) by immunoblotting. Gene expression of metabolic insulin-signaling markers (insulin receptor substrate 1, Akt2, and glycogen synthase kinase 3 beta [GSK-3β]) and glucose transport (basal glucose transporter 1 and insulin-sensitive glucose transporter 4) was evaluated using real-time reverse transcription polymerase chain reaction. Lamellar tissue contained significantly more IGF-1R protein than skeletal muscle, indicating the potential significance of IGF-1R signaling for this tissue. Gene expression of the selected markers of insulin signaling and glucose transport in skeletal muscle and lamellar tissues was unaffected by prolonged hyperinsulinemia. In contrast, the significant upregulation of Akt2, GSK-3β, GLUT1, and GLUT4 gene expression in cardiac tissue suggested that the prolonged hyperinsulinemia induced an increase in insulin sensitivity and a transcriptional activation of glucose transport. Responses to insulin are tissue-specific, and extrapolation of data across tissue sites is inappropriate.
Resumo:
DairyMod, EcoMod, and the SGS Pasture Model are mechanistic biophysical models developed to explore scenarios in grazing systems. The aim of this manuscript was to test the ability of the models to simulate net herbage accumulation rates of ryegrass-based pastures across a range of environments and pasture management systems in Australia and New Zealand. Measured monthly net herbage accumulation rate and accumulated yield data were collated from ten grazing system experiments at eight sites ranging from cool temperate to subtropical environments. The local climate, soil, pasture species, and management (N fertiliser, irrigation, and grazing or cutting pattern) were described in the model for each site, and net herbage accumulation rates modelled. The model adequately simulated the monthly net herbage accumulation rates across the range of environments, based on the summary statistics and observed patterns of seasonal growth, particularly when the variability in measured herbage accumulation rates was taken into account. Agreement between modelled and observed growth rates was more accurate and precise in temperate than in subtropical environments, and in winter and summer than in autumn and spring. Similarly, agreement between predicted and observed accumulated yields was more accurate than monthly net herbage accumulation. Different temperature parameters were used to describe the growth of perennial ryegrass cultivars and annual ryegrass; these differences were in line with observed growth patterns and breeding objectives. Results are discussed in the context of the difficulties in measuring pasture growth rates and model limitations.
Resumo:
Despite an abundance of polyembryonic genotypes and the need for rootstocks that improve scion yield and productivity, simultaneous field testing of a wide range of mango (Mangifera indica L.) genotypes as rootstocks has not previously been reported. In this experiment, we examined the growth and yield of 'Kensington Pride' on 64 mango genotypes of diverse origin during the first four seasons of fruit production to identify those worth longer-term assessment. We also recorded morphological characteristics of seedlings of 46 of these genotypes in an attempt to relate these measures to subsequent field performance. Tree canopy development on the most vigorous rootstocks was almost double that on the least vigorous. Growth rates differed by more than 160%. Cumulative marketable yield ranged from 36 kg/tree for the lowest yielding rootstock to 181 kg/tree for the most productive. Yield efficiency also differed markedly among the 64 rootstocks with the best treatment being 3.5 times more efficient than the poorest treatment. No relationship was found between yield efficiency and tree size, suggesting it is possible to select highly efficient rootstocks of differing vigor. Two genotypes ('Brodie' and 'MYP') stood out as providing high yield efficiency with small tree size. A further two genotypes ('B' and 'Watertank') were identified as offering high yield efficiency and large tree size and should provide high early yields at traditional tree spacing. Efforts to relate the morphology of different genotype seedlings to subsequent performance as a rootstock showed that nursery performance of mango seedlings is no indication of their likely behavior as a rootstock. The economic cost of poor yields and low yield efficiencies during the early years of commercial orchard production provide a rationale for culling many of the rootstock treatments in this experiment and concentrating future assessment on the top ~20% of the 64 treatments. Of these, 'MYP', 'B', 'Watertank', 'Manzano', and 'Pancho' currently show the most promise.
Resumo:
24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2-/- mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet. Bile composition, serum biochemistry, liver histology, fibrosis, and expression of key detoxification and transport systems were investigated. Direct choleretic effects were addressed in isolated bile duct units. The role of Cftr for norUDCA-induced choleresis was explored in Cftr-/- mice. norUDCA had pharmacologic features that were not shared by its derivatives, including the increase in hepatic and serum bile acid levels and a strong stimulation of biliary HCO3- -output. norUDCA directly stimulated fluid secretion in isolated bile duct units in a HCO3- -dependent fashion to a higher extent than the other bile acids. Notably, the norUDCA significantly stimulated HCO 3- -output also in Cftr-/- mice. In Mdr2-/- mice, cholangitis and fibrosis strongly improved with norUDCA, remained unchanged with tauro- norUDCA, and worsened with di norUDCA. Expression of Mrp4, Cyp2b10, and Sult2a1 was increased by norUDCA and di norUDCA, but was unaffected by tauro- norUDCA. Conclusion:The relative resistance of norUDCA to amidation may explain its unique physiologic and pharmacologic properties. These include the ability to undergo cholehepatic shunting and to directly stimulate cholangiocyte secretion, both resulting in a HCO3- -rich hypercholeresis that protects the liver from cholestatic injury.
Resumo:
One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.
Resumo:
Low-volume, backline applications with the benzoylphenyl urea insecticides triflumuron and diflubenzuron represent in excess of 70% of treatments for the control of sheep lice, Bovicola ovis (Schrank) (Phthiraptera: Trichodectidae), in Australia. Reports of reduced effectiveness from 2003 and subsequent controlled treatment trials suggested the emergence of resistance to these compounds in B. ovis populations. A laboratory assay based on the measurement of moulting success in nymphs was developed and used to assess susceptibility to diflubenzuron and triflumuron in louse populations collected from sheep where a control failure had occurred. These tests confirmed the development of resistance to triflumuron and diflubenzuron in at least two instances, with estimated resistance ratios of 67-94X at LC50.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
The objective of this study was to examine genetic changes in reproduction traits in sows (total number born (TNB), number born alive (NBA), average piglet birth weight (ABW) and number of piglets weaned (NW), body weight prior to mating (MW), gestation length (GL) and daily food intake during lactation (DFI)) in lines of Large White pigs divergently selected over 4 years for high and low post-weaning growth rate on a restricted ration. Heritabilities and repeatabilities of the reproduction traits were also determined. The analyses were carried out on 913 litter records using average information-restricted maximum likelihood method applied to single trait animal models. Estimates of heritability for most traits were small, except for ABW (0·33) and MW (0·35). Estimates of repeatability were slightly higher than those of heritability for TNB, NBA and NW, but they were almost identical for ABW, MW, GL and DFI. After 4 years of selection, the high growth line sows had significantly heavier body weight prior to mating and produced significantly more piglets born alive with heavier average birth weight than the low line sows. There were, however, no statistical differences between the selected lines in TNB or NW. The lower food intake of high relative to low line sows during lactation was not significant, indicating that daily food intake differences found between grower pigs in the high and low lines (2·71 v. 2·76 kg/day, s.e.d. 0·024) on ad libitum feeding were not fully expressed in lactating sows. It is concluded that selection for growth rate on the restricted ration resulted in beneficial effects on important measures of reproductive performance of the sows.
Resumo:
The tropical abalone Haliotis asinina is a wild-caught and cultured species throughout the Indo-Pacific as well as being an emerging model species for the study of haliotids. H. asinina has the fastest recorded natural growth rate of any abalone and reaches sexual maturity within one year. As such, it is a suitable abalone species for selective breeding for commercially important traits such as rapid growth. Estimating the amount of variation in size that is attributable to heritable genetic differences can assist the development of such a selective breeding program. Here we estimated heritability for growth-related traits at 12 months of age by creating a single cohort of 84 families in a full-factorial mating design consisting of 14 sires and 6 dams. Of 500 progeny sampled, 465 were successfully assigned to their parents based on shared alleles at 5 polymorphic microsatellite loci. Using an animal model, heritability estimates were 0.48 ± 0.15 for shell length, 0.38 ± 0.13 for shell width and 0.36 ± 0.13 for weight. Genetic correlations were > 0.98 between shell parameters and weight, indicating that breeding for weight gains could be successfully achieved by selecting for shell length.
Resumo:
The effect of defoliation on Amarillo (Arachis pintoi cv. Amarillo) was studied in a glasshouse and in mixed swards with 2 tropical grasses. In the glasshouse, Amarillo plants grown in pots were subjected to a 30/20°C or 25/15°C temperature regime and to defoliation at 10-, 20- or 30-day intervals for 60 days. Two field plot studies were conducted on Amarillo with either irrigated kikuyu (Pennisetum clandestinum) in autumn and spring or dryland Pioneer rhodes grass (Chloris gayana) over summer and autumn. Treatments imposed were 3 defoliation intervals (7, 14 and 28 days) and 2 residual heights (5 and 10 cm for kikuyu; 3 and 10 cm for rhodes grass) with extra treatments (56 days to 3 cm for both grasses and 21 days to 5 cm for kikuyu). Defoliation interval had no significant effect on accumulated Amarillo leaf dry matter (DM) at either temperature regime. At the higher temperature, frequent defoliation reduced root dry weight (DW) and increased crude protein (CP) but had no effect on stolon DW or in vitro organic matter digestibility (OMD). On the other hand, at the lower temperature, frequent defoliation reduced stolon DW and increased OMD but had no effect on root DW or CP. Irrespective of temperaure and defoliation, water-soluble carbohydrate levels were higher in stolons than in roots (4.70 vs 3.65%), whereas for starch the reverse occured (5.37 vs 9.44%). Defoliating the Amarillo-kikuyu sward once at 56 days to 3 cm produced the highest DM yield in autumn and sprong (582 and 7121 kg/ha DM, respectively), although the Amarillo component and OMD were substantially reduced. Highest DM yields (1726 kg/ha) were also achieved in the Amarillo-rhodes grass sward when defoliated every 56 days to 3 cm, although the Amarillo component was unaffected. In a mixed sward with either kikuyu or rhodes grass, the Amarillo component in the sward was maintained up to a 28-day defoliation interval and was higher when more severely defoliated. The results show that Amarillo can tolerate frequent defoliation and that it can co-exist with tropical grasses of differing growth habits, provided the Amarillo-tropical grass sward is subject to frequent and severe defoliation.
Resumo:
Captive-reared broodstock of the black tiger prawn (Penaeus monodon) have exhibited poor reproductive performance limiting attempts to domesticate this species. The potential for improved reproductive performance was assessed by determining heritabilities of four measures of reproductive performance, their genetic correlations with each other and with growth rate and weight at age. Heritability estimates (h2 ± S.E.) obtained from √ (days to spawn), √ (egg number), √ (nauplii number) and arcsin √ (proportion hatched) were 0.47 ± 0.15, 0.41 ± 0.18, 0.27 ± 0.16, and 0.18 ± 0.16, respectively. Estimates of genetic correlations between reproductive traits and weight at age, or growth rate were less than 0.5 except for √ (egg number) and weight at 54 weeks (0.93 ± 0.19) and √ (egg number) and 16-54-week growth (0.63 ± 0.29).
Resumo:
Consumers today are presented with an increasing array of products. The growing competition for consumer expenditure requires a whole of supply chain approach to maintain market share for existing cultivars and to successfully commercialise new cultivars. The supply chain needs to deliver value and satisfaction to the end customer and profitability to their members. Critical to getting the product right is developing inherent robustness into the cultivar, and developing processes and systems through the whole supply chain that maintain product quality and add value. This paper describes the approach we have used in working with supply chains in Australia and Indonesia to identify priority areas for improvement. Our experience demonstrates the need for a champion in the supply chain with significant influence and a desire to improve. The paper also describes our approach towards improving a specific supply chain to achieve successful commercialisation of a new cultivar. The cultivar was primarily selected for good production characteristics and attractive visual appeal. The performance of the fruit is being monitored from farm to retail shelf to identify points where quality is lost and practices can be improved. A targeted R&D program is investigating ways of improving production efficiency (nutrition, flowering and canopy management), maturity standards to optimise flavour, harvesting and packing practices to reduce skin damage, and ripening and handling practices to optimise shelf life. This integrated approach is based on similar approaches used to improve the performance of existing mango and avocado cultivars.
Resumo:
Cucumber mosaic virus (CMV) was found by reverse transcription polymerase chain reaction (RT-PCR) to be not fully systemic in naturally infected kava (Piper methysticum) plants in Fiji. Twenty-six of 48 samples (54%) from various tissues of three recently infected plants were CMV-positive compared with 7/51 samples (14%) from three long-term infections (plants affected by dieback for more than 1 year). The virus was also found to have a limited ability to move into newly formed stems. CMV was detected in only 2/23 samples taken from re-growth stems arising from known CMV infected/dieback affected plants. Mechanical inoculation experiments conducted in Fiji indicate that the known kava intercrop plants banana (Musa spp.), pineapple (Ananas comosus), peanut (Arachis hypogaea) and the common weed Mikania micrantha are potential hosts for a dieback-causing strain of CMV It was not possible to transmit the virus mechanically to the common kava intercrop plants taro (Colocasia esculenta), Xanthosoma sp., sweet potato (Ipomoea batatas), yam (Dioscorea alata), papaya (Carica papaya) or the weed Momordica charantia. Implications of the results of this research on a possible integrated disease management strategy are discussed.