961 resultados para CELL-VOLUME REGULATION
Resumo:
Background: Tumor volume has been shown to be a prognostic factor for the response of some tumors to radiotherapy. TNM stage has prognostic value for patients treated surgically for non-small cell lung cancer (NSCLC), but its value is less clear for patients treated by nonsurgical means. This may be because tumor size is not a consistent determinant of T stage or stage group. As part of the preliminary analyses for the Trans-Tasman Radiation Oncology Group 99-05 study, the authors performed this analysis to determine to what extent stage reflects tumor volume. Methods: In this prospective multicenter observational study, patients had to have histologically proven NSCLC, no evidence of disease beyond the primary site or thoracic lymph nodes, and been planned for radical radiotherapy with or without chemotherapy. Tumor volume measurements were based on computed tomography-based treatment planning images. Results: Four hundred four patients were available for analysis. There was a strong correlation between (log) maximum tumor diameter and (log) tumor volume (r = 0.93, p < 0.001). Although there was a highly significant trend of increasing volume with increasing T stage and stage group, when tumors were categorized into four groups according to increasing volume, there was only 55% concordance with T stage and 67% concordance with stage group. Conclusions: There is limited correlation between tumor size and disease stage in patients with NSCLC. This justifies documentation and investigation of size as a potential prognostic factor independent of stage. Maximum tumor diameter may be an adequate substitute for volume as a measurement of size.
Resumo:
The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.
Resumo:
The mechanisms of signal transduction and vesicular transport have traditionally been studied in isolation, but recent studies make it clear that the two processes are inextricably linked. A new genome-wide analysis of human kinases using RNA interference shows an unexpected depth and complexity to the interactions between these processes.
Resumo:
The binding of eukaryotic translation elongation factor 1A (eEF1A) to actin is a noncanonical function that may link two distinct cellular processes, cytoskeleton organization and gene expression. Using the yeast Saccharomyces cerevisiae, we have established an in vivo assay that directly identifies specific regions and residues of eEF1A responsible for actin interactions and bundling. Using a unique genetic screen, we isolated a series of eEF1A mutants with reduced actin bundling activity. These mutations alter actin cytoskeleton organization but not translation, indicating that these are separate functions of eEF1A. This demonstrates for the first time a direct consequence of eEF1A on cytoskeletal organization in vivo and the physiological significance of this interaction.
Resumo:
Obesity is an established risk factor for type 2 diabetes. Activation of the adiponectin receptors has a clear role in improving insulin resistance although conflicting evidence exists for its effects on pancreatic beta-cells. Previous reports have identified both adiponectin receptors (ADR-1 and ADR-2) in the beta-cell. Recent evidence has suggested that two distinct regions of the adiponectin molecule, the globular domain and a small N-terminal region, have agonist properties. This study investigates the effects of two agonist regions of adiponectin on insulin secretion, gene expression, cell viability and cell signalling in the rat beta-cell line BRIN-BD11, as well as investigating the expression levels of adiponectin receptors (ADRs) in these cells. Cells were treated with globular adiponectin and adiponectin (15-36) +/-leptin to investigate cell viability, expression of key beta-cell genes and ERK1/2 activation. Both globular adiponectin and adiponectin (15-36) caused significant ERK1/2 dependent increases in cell viability. Leptin co-incubation attenuated adiponectin (15-36) but not globular adiponectin induced cell viability. Globular adiponectin, but not adiponectin (15-36), caused a significant 450% increase in PDX-1 expression and a 45% decrease in LPL expression. ADR-1 was expressed at a higher level than ADR-2, and ADR mRNA levels were differentially regulated by non-esterified fatty acids and peroxisome-proliferator-activated receptor agonists. These data provide evidence of roles for two distinct adiponectin agonist domains in the beta-cell and confirm the potentially important role of adiponectin receptor agonism in maintaining beta-cell mass.
Resumo:
VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.