889 resultados para CANCER STEM-CELL


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies have demonstrated hematopoietic stem cell amplification in vitro after the activation of three cell-surface receptors: flt3/flk2, c-kit, and gp130. We now show flt3-ligand and Steel factor alone will stimulate >85% of c-kit+Sca-1+lin− adult mouse bone marrow cells to proliferate in single-cell serum-free cultures, but concomitant retention of their stem cell activity requires additional exposure to a ligand that will activate gp130. Moreover, this response is restricted to a narrow range of gp130-activating ligand concentrations, above and below which hematopoietic stem cell activity is lost. These findings indicate a unique contribution of gp130 signaling to the maintenance of hematopoietic stem cell function when these cells are stimulated to divide with additional differential effects dictated by the intensity of gp130 activation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the zebrafish possesses many characteristics that make it a valuable model for genetic studies of vertebrate development, one deficiency of this model system is the absence of methods for cell-mediated gene transfer and targeted gene inactivation. In mice, embryonic stem cell cultures are routinely used for gene transfer and provide the advantage of in vitro selection for rare events such as homologous recombination and targeted mutation. Transgenic animals possessing a mutated copy of the targeted gene are generated when the selected cells contribute to the germ line of a chimeric embryo. Although zebrafish embryo cell cultures that exhibit characteristics of embryonic stem cells have been described, successful contribution of the cells to the germ-cell lineage of a host embryo has not been reported. In this study, we demonstrate that short-term zebrafish embryo cell cultures maintained in the presence of cells from a rainbow trout spleen cell line (RTS34st) are able to produce germ-line chimeras when introduced into a host embryo. Messenger RNA encoding the primordial germ-cell marker, vasa, was present for more than 30 days in embryo cells cocultured with RTS34st cells or their conditioned medium and disappeared by 5 days in the absence of the spleen cells. The RTS34st cells also inhibited melanocyte and neuronal cell differentiation in the embryo cell cultures. These results suggest that the RTS34st splenic–stromal cell line will be a valuable tool in the development of a cell-based gene transfer approach to targeted gene inactivation in zebrafish.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The proliferative compartment of stratified squamous epithelia consists of stem and transient amplifying (TA) keratinocytes. Some polypeptides are more abundant in putative epidermal stem cells than in TA cells, but no polypeptide confined to the stem cells has yet been identified. Here we show that the p63 transcription factor, a p53 homologue essential for regenerative proliferation in epithelial development, distinguishes human keratinocyte stem cells from their TA progeny. Within the cornea, nuclear p63 is expressed by the basal cells of the limbal epithelium, but not by TA cells covering the corneal surface. Human keratinocyte stem and TA cells when isolated in culture give rise to holoclones and paraclones, respectively. We show by clonal analysis that p63 is abundantly expressed by epidermal and limbal holoclones, but is undetectable in paraclones. TA keratinocytes, immediately after their withdrawal from the stem cell compartment (meroclones), have greatly reduced p63, even though they possess very appreciable proliferative capacity. Clonal evolution (i.e., generation of TA cells from precursor stem cells) is promoted by the sigma isoform of the 14-3-3 family of proteins. Keratinocytes whose 14-3-3σ has been down-regulated remain in the stem cell compartment and maintain p63 during serial cultivation. The identification of p63 as a keratinocyte stem cell marker will be of practical importance for the clinical application of epithelial cultures in cell therapy as well as for studies on epithelial tumorigenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on transplantation studies with bone marrow cultured under various conditions, a role of interleukin 11 (IL-11) in the self-renewal and/or the differentiation commitment of hematopoietic stem cells has been indicated. To better evaluate the in vivo effects of IL-11 on stem/progenitor cell biology, lethally irradiated mice were serially transplanted with bone marrow cells transduced with a defective retrovirus, termed MSCV-mIL-11, carrying the murine IL-11 (mIL-11) cDNA and the bacterial neomycin phosphotransferase (neo) gene. High serum levels (i.e., > 1 ng/ml) of mIL-11 in all (20/20) primary and 86% (12/14) of secondary long-term reconstituted mice, as well as 86% (12/14) of tertiary recipients examined at 6 weeks posttransplant, demonstrated persistence of vector expression subsequent to transduction of bone marrow precursors functionally definable as totipotent hematopoietic stem cells. In agreement with results obtained with human IL-11 in other myeloablation models, ectopic mIL-11 expression accelerated recovery of platelets, neutrophils, and, to some extent, total leukocytes while preferentially increasing peripheral platelet counts in fully reconstituted mice. When analyzed 5 months posttransplant, tertiary MSCV-mIL-11 recipients had a significantly greater percentage of G418-resistant colony-forming cells in their bone marrow compared with control MSCV animals. Collectively, these data show that persistent stimulation of platelet production by IL-11 is not detrimental to stem cell repopulating ability; rather, they suggest that IL-11 expression in vivo may have resulted in enhanced maintenance of the most primitive hematopoietic stem cell compartment. The prolonged expression achieved by the MSCV retroviral vector, despite the presence of a selectable marker, contrasts with the frequent transcriptional extinction observed with other retroviral vectors carrying two genes. These findings have potentially important implications for clinical bone marrow transplantation and gene therapy of the hematopoietic system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have transduced normal human keratinocytes with retroviral constructs expressing a bacterial beta-galactosidase (beta-gal) gene or a human interleukin-6 (hIL-6) cDNA under control of a long terminal repeat. Efficiency of gene transfer averaged approximately 50% and 95% of clonogenic keratinocytes for beta-gal and hIL-6, respectively. Both genes were stably integrated and expressed for more than 150 generations. Clonal analysis showed that both holoclones and their transient amplifying progeny expressed the transgene permanently. Southern blot analysis on isolated clones showed that many keratinocyte stem cells integrated multiple proviral copies in their genome and that the synthesis of the exogenous gene product in vitro was proportional to the number of proviral integrations. When cohesive epidermal sheets prepared from stem cells transduced with hIL-6 were grafted on athymic animals, the serum levels of hIL-6 were strictly proportional to the rate of secretion in vitro and therefore to the number of proviral integrations. The possibility of specifying the level of transgene expression and its permanence in a homogeneous clone of stem cell origin opens new perspectives in the long-term treatment of genetic disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To assess the role of transcriptional enhancers in regulating accessibility of the T-cell receptor beta-chain (TCRbeta) locus, we generated embryonic stem cell lines in which a single allelic copy of the endogenous TCRbeta enhancer (Ebeta) was either deleted or replaced with the immunoglobulin heavy-chain intronic enhancer. We assayed the effects of these mutations on activation of the TCRbeta locus in normal T- and B-lineage cells by RAG-2 (recombination-activating gene 2)-deficient blastocyst complementation. We found that Ebeta is required for rearrangement and germ-line transcription of the TCRbeta locus in T-lineage cells. In the absence of Ebeta, the heavy-chain intronic enhancer partially supported joining region beta-chain rearrangement in T- but not in B-lineage cells. However, ability of the heavy-chain intronic enhancer to induce rearrangements was blocked by linkage to an expressed neomycin-resistance gene (neo(r)). These results demonstrate a critical role for Ebeta in promoting accessibility of the TCRbeta locus and suggest that additional negative elements may cooperate to further modulate this process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pluripotent hematopoietic stem cells (PHSCs) show self-renewal and give rise to all blood cell types. The extremely low number of these cells in primary hematopoietic organs and the lack of culture systems that support proliferation of undifferentiated PHSCs have precluded the study of both the biology of these cells and their clinical application. We describe here cell lines and clones derived from PHSCs that were established from hematopoietic cells from the fetal liver or bone marrow of normal and p53-deficient mice with a combination of four growth factors. Most cell lines were Sca-1+, c-Kit+, PgP-1+, HSA+, and Lin- (B-220-, Joro 75-, 8C5-, F4/80-, CD4-, CD8-, CD3-, IgM-, and TER 119-negative) and expressed three new surface markers: Joro 177, Joro 184, and Joro 96. They did not synthesize RNA transcripts for several genes expressed at early stages of lymphocyte and myeloid/erythroid cell development. The clones were able to generate lymphoid, myeloid, and erythroid hematopoietic cells and to reconstitute the hematopoietic system of irradiated mice for a long time. The availability of lymphohematopoietic stem cell lines should facilitate the analysis of the molecular mechanisms that control self-renewal and differentiation and the development of efficient protocols for somatic gene therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of their known myelopoietic activities, both interleukin (IL)-3 and IL-1 are often used in combination with other cytokines for in vitro (ex vivo) expansion of stem cells. We have investigated the effects of IL-3 and IL-1 on in vitro expansion of murine hematopoietic stem cells with long-term engraftment capabilities, using a highly purified progenitor population. Lineage-negative, Ly-6A/E+, c-kit+ bone marrow cells from male mice were cultured in suspension in the presence of stem cell factor, IL-6, IL-11, and erythropoietin with or without IL-3 or IL-1. Kinetic studies revealed an exponential increase in total nucleated cells and about 10-fold enhancement of nucleated cells by IL-3 during the initial 10 days. Addition of IL-3 hastened the development but significantly suppressed the peak production of colony-forming cells. Addition of IL-1 also significantly suppressed the numbers of colony-forming cells. The reconstituting ability of the cultured cells was tested by transplanting the expanded male cells into lethally irradiated female mice. The cells expanded from enriched cells in the absence of IL-3 and IL-1 revealed engraftment at 2, 4, 5, and 6 months, whereas addition of IL-3 or IL-1 to the cultures significantly reduced the reconstituting ability. The results suggest that these cytokines may have a modulatory role on the self-renewal of stem cells and further indicate that the use of IL-3 and IL-1 for in vitro expansion of human stem cells needs to be cautiously evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eph and its homologues form the largest subfamily of receptor tyrosine kinases. Normal expression patterns of this subfamily indicate roles in differentiation and development, whereas their overexpression has been linked to oncogenesis. This study investigated the potential role of Eph-related molecules during very early embryonic development by examining their expression in embryonic stem (ES) cells and embryoid bodies differentiated from ES cells in vitro. By use of a strategy based on reverse transcriptase-mediated PCR, nine clones containing Eph-subfamily sequence were isolated from ES cells. Of these, eight were almost identical to one of four previously identified molecules (Sek, Nuk, Eck, and Mek4). However, one clone contained sequence from a novel Eph-subfamily member, which was termed embryonic stem-cell kinase or Esk. Northern analysis showed expression of Esk in ES cells, embryoid bodies, day 12 mouse embryos, and some tissues of the adult animal. Levels of expression were similar in ES cells and embryoid bodies. By comparison, Mek4 showed no significant transcription in the ES cell cultures by Northern analysis, whereas Eck displayed stronger signals in ES cells than in the embryoid bodies. These results suggest that Eph-subfamily molecules may play roles during the earliest phases of embryogenesis. Furthermore, the relative importance of different members of this subfamily appears to change as development proceeds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Successful gene transfer into stem cells would provide a potentially useful therapeutic modality for treatment of inherited and acquired disorders affecting hematopoietic tissues. Coculture of primate bone marrow cells with retroviral producer cells, autologous stroma, or an engineered stromal cell line expressing human stem cell factor has resulted in a low efficiency of gene transfer as reflected by the presence of 0.1-5% of genetically modified cells in the blood of reconstituted animals. Our experiments in a nonhuman primate model were designed to explore various transduction protocols that did not involve coculture in an effort to define clinically useful conditions and to enhance transduction efficiency of repopulating cells. We report the presence of genetically modified cells at levels ranging from 0.1% (granulocytes) to 14% (B lymphocytes) more than 1 year following reconstitution of myeloablated animals with CD34+ immunoselected cells transduced in suspension culture with cytokines for 4 days with a retrovirus containing the glucocerebrosidase gene. A period of prestimulation for 7 days in the presence of autologous stroma separated from the CD34+ cells by a porous membrane did not appear to enhance transduction efficiency. Infusion of transduced CD34+ cells into animals without myeloablation resulted in only transient appearance of genetically modified cells in peripheral blood. Our results document that retroviral transduction of primate repopulating cells can be achieved without coculture with stroma or producer cells and that the proportion of genetically modified cells may be highest in the B-lymphoid lineage under the given transduction conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation.