940 resultados para C sequestration rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance heterotrophic dinoflagellates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of heterotrophic dinoflagellates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known dinoflagellate feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C dinoflagellate-1 h-1, µm3 dinoflagellate-1 h-1 and prey cell dinoflagellate-1 h-1; clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of fecal pellet flux show that a large percentage of pellets produced in the upper ocean is degraded within the surface waters. It is therefore important to investigate these degradation mechanisms to understand the role of fecal pellets in the oceanic carbon cycle. Degradation of pellets is mainly thought to be caused by coprophagy (ingestion of fecal pellets) by copepods, and especially by the ubiquitous copepods Oithona spp. We examined fecal pellet ingestion rate and feeding behavior of O. similis and 2 other dominant copepod species from the North Sea (Calanus helgolandicus and Pseudocalanus elongatus). All investigations were done with fecal pellets as the sole food source and with fecal pellets offered together with an alternative suitable food source. The ingestion of fecal pellets by all 3 copepod species was highest when offered together with an alternative food source. No feeding behavior was determined for O. similis due to the lack of pellet capture in those experiments. Fecal pellets offered together with an alternative food source increased the filtration activity by C. helgolandicus and P. elongatus and thereby the number of pellets caught in their feeding current. However, most pellets were rejected immediately after capture and were often fragmented during rejection. Actual ingestion of captured pellets was rare (<37% for C. helgolandicus and <24% for P. elongatus), and only small pellet fragments were ingested unintentionally along with alternative food. We therefore suggest coprorhexy (fragmentation of pellets) to be the main effect of copepods on the vertical flux of fecal pellets. Coprorhexy turns the pellets into smaller, slower-sinking particles that can then be degraded by other organisms such as bacteria and protozooplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic climate change confronts marine organisms with rapid trends of concomitant warming and CO2 induced ocean acidification. The survival and distribution of species partly depend on their ability to exploit their physiological plasticity during acclimatization. Therefore, in laboratory studies the effects of simulated future ocean acidification on thermal tolerance, energy metabolism and acid-base regulation capacity of the North Sea population of the blue mussel Mytilus edulis were examined. Following one month of pre-acclimation to 10 °C and control CO2 levels, mussels were exposed for two weeks to control and projected oceanic CO2 levels (390, 750 and 1120 µatm) before being subjected to a stepwise warming protocol between 10 °C and 31 °C (+ 3 °C each night). Oxygen consumption and heart rates, anaerobic metabolite levels and haemolymph acid-base status were determined at each temperature. CO2 exposure left oxygen consumption rate unchanged at acclimation temperature but caused a somewhat stronger increase during acute warming and thus mildly higher Q10-values than seen in controls. Interestingly, the thermally induced limitation of oxygen consumption rate set in earlier in normocapnic than in hypercapnic (1120 µatm CO2) mussels (25.2 °C vs. 28.8 °C), likely due to an onset of metabolic depression in the control group following warming. However, the temperature induced increase in heart rate became limited above 25 °C in both groups indicating an unchanged pejus temperature regardless of CO2 treatment. An upper critical temperature was reached above 28 °C in both treatments indicated by the accumulation of anaerobic metabolites in the mantle tissue, paralleled by a strong increase in haemolymph PCO2 at 31 °C. Ocean acidification caused a decrease in haemolymph pH. The extracellular acidosis remained largely uncompensated despite some bicarbonate accumulation. In all treatments animals developed a progressive warming-induced extracellular acidosis. A stronger pH drop at around 25 °C was followed by stagnating heart rates. However, normocapnic mussels enhanced bicarbonate accumulation at the critical limit, a strategy no longer available to hypercapnic mussels. In conclusion, CO2 has small effects on the response patterns of mussels to warming, leaving thermal thresholds largely unaffected. High resilience of adult North Sea mussels to future ocean acidification indicates that sensitivity to thermal stress is more relevant in shaping the response to future climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolution rates of calcareous ooze were measured for samples from Deep Sea Drilling Project (DSDP) Site 506, which is in the area of the Galapagos Spreading Center. Using the free-drift method, measurements were carried out at 25 °C and atmospheric pressure. No significant difference in dissolution rates was found among the samples from three holes. However, in the present samples, the concentration of carbonate ion in seawater that is in equilibrium with calcite is 20 to 30% greater than is the case with synthetic calcite. That is, the dissolution rate of calcite under nearequilibrium conditions is greater than that of either synthetic calcite or sediments from the central Pacific (Morse, 1978). These results are consistent with field evidence indicating that the calcium carbonate compensation depth in the Galapagos region is shallower than in most other Pacific regions (Berger et al., 1976).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site 1123 is located on the northeastern flank of the Chatham Rise. Sedimentological and clay mineralogical analyses indicate a very fine grained carbonate-rich sediment. Smectite and illite are the main constituents of the clay mineral assemblage. High smectite values in the Eocene decrease in younger sediment sequences. Illite and chlorite concentrations increase in younger sediments with significant steps at 13.5, 9, and 6.4 Ma. The kaolinite content is near the detection limit and not significant. We observed only small fluctuations of the clay mineral composition, which indicates a uniform sedimentation process, probably driven by long-term processes. Good correspondence is shown between increasing illite and chlorite values and the tectonic uplift history of the Southern Alps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.